FourierSeries`
FourierSeries`

InverseDTFourierTransform

As of Version 7.0, InverseDTFourierTransform has been renamed to InverseFourierSequenceTransform and is part of the built-in Wolfram Language kernel.

InverseDTFourierTransform[expr,ω,n]

gives the inverse discrete time Fourier transform of expr, where expr is a periodic function of ω with period 1.

更多信息和选项

  • To use InverseDTFourierTransform, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
  • The inverse discrete time Fourier transform of expr is by default defined to be Integrate[expr -2πnω,{ω,-,}].
  • If n is numeric, it should be an explicit integer.
  • Different choices for the definition of the inverse discrete time Fourier transform can be specified using the option FourierParameters.
  • With the setting FourierParameters->{a,b}, expr is assumed to have a period of , and the inverse discrete time Fourier transform computed by InverseDTFourierTransform is Integrate[expr -2πω,{ω,-,}].
  • In addition to the option FourierParameters, InverseDTFourierTransform can also accept the options available to Integrate. These options are passed directly to Integrate.

范例

基本范例  (1)

Find a sequence with a given discrete time Fourier transform:

Compare with the answer from a numerical approximation:

Wolfram Research (2008),InverseDTFourierTransform,Wolfram 语言函数,https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html.

文本

Wolfram Research (2008),InverseDTFourierTransform,Wolfram 语言函数,https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html.

CMS

Wolfram 语言. 2008. "InverseDTFourierTransform." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html.

APA

Wolfram 语言. (2008). InverseDTFourierTransform. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html 年

BibTeX

@misc{reference.wolfram_2024_inversedtfouriertransform, author="Wolfram Research", title="{InverseDTFourierTransform}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html}", note=[Accessed: 26-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_inversedtfouriertransform, organization={Wolfram Research}, title={InverseDTFourierTransform}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html}, note=[Accessed: 26-December-2024 ]}