LinearAlgebra`BLAS`
LinearAlgebra`BLAS`

# NRM2

NRM2[x]

gives the Euclidean norm of the vector x.

# Details and Options

• To use NRM2, you first need to load the BLAS Package using Needs["LinearAlgebra`BLAS`"].
• The following argument must be given:
•  x input expression vector
• NRM2[x] is equivalent to Sqrt[x.Conjugate[x]].

# Examples

open allclose all

## Basic Examples(1)

Compute the Euclidean norm of a vector:

## Scope(4)

A real vector:

A complex vector:

An arbitrary-precision vector:

A symbolic vector:

## Properties & Relations(2)

For a vector x, NRM2[x] is equivalent to Norm[x]:

For a vector x, NRM2[x] is equivalent to Sqrt[x.Conjugate[x]]:

Wolfram Research (2017), NRM2, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/NRM2.html.

#### Text

Wolfram Research (2017), NRM2, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/NRM2.html.

#### CMS

Wolfram Language. 2017. "NRM2." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/NRM2.html.

#### APA

Wolfram Language. (2017). NRM2. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/NRM2.html

#### BibTeX

@misc{reference.wolfram_2023_nrm2, author="Wolfram Research", title="{NRM2}", year="2017", howpublished="\url{https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/NRM2.html}", note=[Accessed: 20-May-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2023_nrm2, organization={Wolfram Research}, title={NRM2}, year={2017}, url={https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/NRM2.html}, note=[Accessed: 20-May-2024 ]}