solves triangular systems of linear equations opts[a].x=α b or x.opts[a]==α b and resets b to the results x.


  • To use TRSM, you first need to load the BLAS Package using Needs["LinearAlgebra`BLAS`"].
  • The following arguments must be given:
  • sdinput stringleft/right side string
  • input string
  • upper/lower triangular string
    tsinput stringtransposition string
    dginput stringdiagonal ones string
    αinput expressionscalar mutliple
    ainput expressionrectangular matrix
    binput/output symbolrectangular matrix; the symbol value is modified in place
  • The left/right side string sd may be specified as:
  • "L"a is on the left side of the dot product
    "R"a is on the right side of the dot product
  • The upper/lower triangular string ul may be specified as:
  • "U"the upper triangular part of a is to be used
    "L"the lower triangular part of a is to be used
  • The transposition strings describe the operators opts and may be specified as:
  • "N"no transposition
    "C"conjugate transpose
  • The diagonal ones string dg may be specified as:
  • "U"the main diagonal of a is assumed to contain only ones
    "N"the actual values of the main diagonal of a are used
  • Dimensions of the matrix arguments must be such that the dot product is well defined.


open all close all

Basic Examples  (1)

Load the BLAS package:

Click for copyable input

Compute Inverse[UpperTriangularize[a]].b and save it in b:

Click for copyable input

Scope  (4)

Properties & Relations  (4)

Possible Issues  (2)