NonlinearRegression`
NonlinearRegression`

NonlinearRegress

As of Version 7.0, NonlinearRegress has been superseded by NonlinearModelFit and is part of the built-in Wolfram Language kernel.

NonlinearRegress[data,expr,pars,vars]

finds numerical values of the parameters pars that make the model expr give a best fit to data as a function of vars and provides diagnostics for the fitting.

NonlinearRegress[data,{expr,cons},pars,vars]

finds a best fit and provides diagnostics subject to the constraints cons.

Details and Options

Examples

open allclose all

Basic Examples  (1)

Nonlinear regression with parameters a and b:

Options  (5)

ConfidenceLevel  (1)

Nonlinear regression with 99% confidence intervals:

RegressionReport  (1)

Nonlinear regression with a specific list of report values:

Weights  (2)

Weighted regression with specific weights given for each data element:

Weighted regression with weights equal to the squares of the measured responses:

WorkingPrecision  (1)

Nonlinear regression using precision 20:

Wolfram Research (2007), NonlinearRegress, Wolfram Language function, https://reference.wolfram.com/language/NonlinearRegression/ref/NonlinearRegress.html.

Text

Wolfram Research (2007), NonlinearRegress, Wolfram Language function, https://reference.wolfram.com/language/NonlinearRegression/ref/NonlinearRegress.html.

CMS

Wolfram Language. 2007. "NonlinearRegress." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/NonlinearRegression/ref/NonlinearRegress.html.

APA

Wolfram Language. (2007). NonlinearRegress. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/NonlinearRegression/ref/NonlinearRegress.html

BibTeX

@misc{reference.wolfram_2024_nonlinearregress, author="Wolfram Research", title="{NonlinearRegress}", year="2007", howpublished="\url{https://reference.wolfram.com/language/NonlinearRegression/ref/NonlinearRegress.html}", note=[Accessed: 14-September-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_nonlinearregress, organization={Wolfram Research}, title={NonlinearRegress}, year={2007}, url={https://reference.wolfram.com/language/NonlinearRegression/ref/NonlinearRegress.html}, note=[Accessed: 14-September-2024 ]}