\$MaxExtraPrecision

gives the maximum number of extra digits of precision to be used in functions such as N.

Examples

open allclose all

Basic Examples(1)

Allow up to 1000 digits of extra precision to complete a numerical approximation:

Scope(2)

Allow as much extra precision as possible:

The default of 50 is not sufficient for some calculations:

The result does not have the requested precision:

Often raising \$MaxExtraPrecision by just over the precision deficit will be sufficient:

Possible Issues(1)

For hidden zeros, raising \$MaxExtraPrecision will not help:

Allowing unlimited extra precision can lead to running out of memory:

Relative error measured by Precision is not defined at zero, so use Accuracy as a goal:

Symbolic simplification may resolve the dilemma conclusively:

Wolfram Research (1996), \$MaxExtraPrecision, Wolfram Language function, https://reference.wolfram.com/language/ref/\$MaxExtraPrecision.html.

Text

Wolfram Research (1996), \$MaxExtraPrecision, Wolfram Language function, https://reference.wolfram.com/language/ref/\$MaxExtraPrecision.html.

CMS

Wolfram Language. 1996. "\$MaxExtraPrecision." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/\$MaxExtraPrecision.html.

APA

Wolfram Language. (1996). \$MaxExtraPrecision. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/\$MaxExtraPrecision.html

BibTeX

@misc{reference.wolfram_2021_\$maxextraprecision, author="Wolfram Research", title="{\$MaxExtraPrecision}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/\$MaxExtraPrecision.html}", note=[Accessed: 23-May-2022 ]}

BibLaTeX

@online{reference.wolfram_2021_\$maxextraprecision, organization={Wolfram Research}, title={\$MaxExtraPrecision}, year={1996}, url={https://reference.wolfram.com/language/ref/\$MaxExtraPrecision.html}, note=[Accessed: 23-May-2022 ]}