LongestCommonSequence

LongestCommonSequence[s1,s2]

找出字符串、列表或生物分子序列 s1s2 中由相邻或是分离的元素组成的最长公共序列.

更多信息和选项

范例

打开所有单元关闭所有单元

基本范例  (3)

求两个字符串共有的最长不连续序列:

找出两个列表共有的最长不连续序列:

求两个生物分子序列共有的最长非连续序列:

巧妙范例  (1)

在长度为 100 的随机二进制序列中,求出最长的共同序列的长度:

Wolfram Research (2008),LongestCommonSequence,Wolfram 语言函数,https://reference.wolfram.com/language/ref/LongestCommonSequence.html (更新于 2020 年).

文本

Wolfram Research (2008),LongestCommonSequence,Wolfram 语言函数,https://reference.wolfram.com/language/ref/LongestCommonSequence.html (更新于 2020 年).

CMS

Wolfram 语言. 2008. "LongestCommonSequence." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2020. https://reference.wolfram.com/language/ref/LongestCommonSequence.html.

APA

Wolfram 语言. (2008). LongestCommonSequence. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/LongestCommonSequence.html 年

BibTeX

@misc{reference.wolfram_2024_longestcommonsequence, author="Wolfram Research", title="{LongestCommonSequence}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/LongestCommonSequence.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_longestcommonsequence, organization={Wolfram Research}, title={LongestCommonSequence}, year={2020}, url={https://reference.wolfram.com/language/ref/LongestCommonSequence.html}, note=[Accessed: 21-November-2024 ]}