MinkowskiQuestionMark
gives Minkowski's question mark function .
Details
- Mathematical function, suitable for both symbolic and numeric manipulation.
- For a real number with continued fraction representation , the Minkowski's question mark function equals .
- For certain arguments, MinkowskiQuestionMark automatically evaluates to exact values.
- MinkowskiQuestionMark can be evaluated to arbitrary numerical precision.
- MinkowskiQuestionMark automatically threads over lists.
Examples
open allclose allBasic Examples (2)
Evaluate MinkowskiQuestionMark at a quadratic irrational number:
Plot MinkowskiQuestionMark over the unit interval:
Scope (14)
Numerical Evaluation (6)
Evaluate at quadratic irrational numbers:
Compute the elementwise values of an array:
Or compute the matrix MinkowskiQuestionMark function using MatrixFunction:
Function Properties (8)
MinkowskiQuestionMark is defined for all real numbers:
Its domain is restricted to real inputs:
MinkowskiQuestionMark achieves all real values::
MinkowskiQuestionMark is injective:
MinkowskiQuestionMark has no discontinuities:
However, it is singular everywhere:
MinkowskiQuestionMark is nondecreasing:
MinkowskiQuestionMark is neither non-negative or non-positive:
MinkowskiQuestionMark is neither convex nor concave:
TraditionalForm formatting:
Applications (3)
Enumeration of rational numbers from the unit interval, based on the binary representation of the ordinal number:
First few rational numbers, according to the chosen enumeration strategy:
Plot the cumulative distribution function of so constructed rationals:
Compare it with the Minkowski's question mark function:
An unstable fixed point of the Minkowski's question mark function:
Properties & Relations (2)
The Minkowski's question mark function satisfies reflection identity :
For the function also satisfies :
MinkowskiQuestionMark satisfies for adjacent elements and of a Farey sequence:
Text
Wolfram Research (2014), MinkowskiQuestionMark, Wolfram Language function, https://reference.wolfram.com/language/ref/MinkowskiQuestionMark.html.
CMS
Wolfram Language. 2014. "MinkowskiQuestionMark." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MinkowskiQuestionMark.html.
APA
Wolfram Language. (2014). MinkowskiQuestionMark. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MinkowskiQuestionMark.html