Iterated Maps & Fractals
The Wolfram Language has flexible capabilities for handling iterated maps, as well as highly optimized algorithms for common objects of investigation such as Julia sets and the Mandelbrot set.
Iterating Arbitrary Functions
Nest — iterate a function
NestList ▪ NestGraph ▪ NestWhile ▪ NestWhileList ▪ FixedPoint ▪ FixedPointList
ReplaceRepeated — do repeated substitutions
Groupings — generate all possible nestings from a list
Substitution Systems
SubstitutionSystem — string, list, or array substitution system
RulePlot — display rules and evolutions for substitution systems
Geometric Iteration
AnglePath — compute a "turtle graphics" path from turns and moves
AnglePath3D — compute a path from successive rotations in 3D
Space-Filling Curves
HilbertCurve — generate a Hilbert curve in any dimension
PeanoCurve ▪ SierpinskiCurve ▪ KochCurve
Complex Iterated Maps
JuliaSetPlot — plot Julia sets of arbitrary rational functions
JuliaSetPoints ▪ JuliaSetIterationCount
MandelbrotSetPlot — plot the Mandelbrot set at any resolution
MandelbrotSetMemberQ ▪ MandelbrotSetDistance ▪ MandelbrotSetIterationCount
JuliaSetBoettcher ▪ MandelbrotSetBoettcher
Fractal Regions
CantorMesh ▪ MengerMesh ▪ SierpinskiMesh
Fractal Functions
CantorStaircase ▪ MinkowskiQuestionMark
Discrete Recurrence Relations
RecurrenceTable — create a table of values from recurrence relations
Substitution Sequences
Iterated Boolean Functions
CellularAutomaton — arbitrary cellular automaton rules in any number of dimensions
Iterated String Substitutions
StringReplaceList — generate a multiway system with string replacements