gives the Böttcher coordinate of z with respect to the Mandelbrot set.


MandelbrotSetBoettcher
gives the Böttcher coordinate of z with respect to the Mandelbrot set.
Details and Options

- The Mandelbrot set is the set of all complex numbers
for which the sequence
does not diverge to infinity when starting with
.
- With the option MaxIterations->m, the sequence
will be iterated at most m times to approximate
.
- The default setting is MaxIterations->100.
- MandelbrotSetBoettcher can be evaluated to arbitrary numerical precision.
- MandelbrotSetBoettcher automatically threads over lists.
Examples
open all close allBasic Examples (3)
Scope (3)
MandelbrotSetBoettcher threads itself element-wise over lists:
MandelbrotSetBoettcher works on all kinds of numbers:
Options (1)
MaxIterations (1)
Sometimes MaxIterations needs to be increased:
Applications (3)
Related Guides
History
Text
Wolfram Research (2014), MandelbrotSetBoettcher, Wolfram Language function, https://reference.wolfram.com/language/ref/MandelbrotSetBoettcher.html.
CMS
Wolfram Language. 2014. "MandelbrotSetBoettcher." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MandelbrotSetBoettcher.html.
APA
Wolfram Language. (2014). MandelbrotSetBoettcher. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MandelbrotSetBoettcher.html
BibTeX
@misc{reference.wolfram_2025_mandelbrotsetboettcher, author="Wolfram Research", title="{MandelbrotSetBoettcher}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/MandelbrotSetBoettcher.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_mandelbrotsetboettcher, organization={Wolfram Research}, title={MandelbrotSetBoettcher}, year={2014}, url={https://reference.wolfram.com/language/ref/MandelbrotSetBoettcher.html}, note=[Accessed: 13-August-2025]}