PrincipalComponents
✖
PrincipalComponents
Details and Options

- PrincipalComponents gives the principal component transform of matrix.
- The principal components of matrix are linear transformations of the original columns into uncorrelated columns arranged in order of decreasing variance.
- PrincipalComponents supports a Method option. The following explicit settings can be specified:
-
"Covariance" uses covariance method (default) "Correlation" uses correlation method - If principal components of scaled columns (standardized principal components) are required, the option Method"Correlation" should be used.
- The dimensions of PrincipalComponents[matrix] are the same as the dimensions of matrix.
- If matrix consists of exact numbers or symbols, the result is also exact or symbolic, respectively.
Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Scope (3)Survey of the scope of standard use cases
Principal components computed with arbitrary-precision numbers:

https://wolfram.com/xid/01yyrkv68q7-ijpqbf

Principal components of exact numbers:

https://wolfram.com/xid/01yyrkv68q7-le51c4

Principal components computation involving symbolic expressions:

https://wolfram.com/xid/01yyrkv68q7-6vtlpi

Options (1)Common values & functionality for each option
Properties & Relations (2)Properties of the function, and connections to other functions
The principal component columns are ordered by decreasing variance:

https://wolfram.com/xid/01yyrkv68q7-y07o2m

https://wolfram.com/xid/01yyrkv68q7-mv5rmp

The mean of each principal component column is zero:

https://wolfram.com/xid/01yyrkv68q7-lsjdfc

The principal component columns are not correlated:

https://wolfram.com/xid/01yyrkv68q7-to1afi

The setting Method->"Correlation" yields the same results as standardizing the input matrix:

https://wolfram.com/xid/01yyrkv68q7-t2at3d

Possible Issues (1)Common pitfalls and unexpected behavior
Wolfram Research (2010), PrincipalComponents, Wolfram Language function, https://reference.wolfram.com/language/ref/PrincipalComponents.html.
Text
Wolfram Research (2010), PrincipalComponents, Wolfram Language function, https://reference.wolfram.com/language/ref/PrincipalComponents.html.
Wolfram Research (2010), PrincipalComponents, Wolfram Language function, https://reference.wolfram.com/language/ref/PrincipalComponents.html.
CMS
Wolfram Language. 2010. "PrincipalComponents." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PrincipalComponents.html.
Wolfram Language. 2010. "PrincipalComponents." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PrincipalComponents.html.
APA
Wolfram Language. (2010). PrincipalComponents. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PrincipalComponents.html
Wolfram Language. (2010). PrincipalComponents. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PrincipalComponents.html
BibTeX
@misc{reference.wolfram_2025_principalcomponents, author="Wolfram Research", title="{PrincipalComponents}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/PrincipalComponents.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_principalcomponents, organization={Wolfram Research}, title={PrincipalComponents}, year={2010}, url={https://reference.wolfram.com/language/ref/PrincipalComponents.html}, note=[Accessed: 04-April-2025
]}