VertexWeightedGraphQ

VertexWeightedGraphQ[g]

如果图 g 是顶点加权图,返回 True,否则返回 False.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (1)

检验图是否为顶点加权图:

范围  (7)

VertexWeightedGraphQ 适用于无向图:

有向图:

加权图:

多重图:

混合图:

对于任何不是顶点加权的图,VertexWeightedGraphQ 给出 False

VertexWeightedGraphQ 适用于大图:

属性和关系  (2)

顶点加权图一定是加权图:

加权图却不一定是顶点加权图:

可能存在的问题  (1)

对于非明确 (non-explicit) 图,VertexWeightedGraphQ 给出 False:

Wolfram Research (2019),VertexWeightedGraphQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html.

文本

Wolfram Research (2019),VertexWeightedGraphQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html.

CMS

Wolfram 语言. 2019. "VertexWeightedGraphQ." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html.

APA

Wolfram 语言. (2019). VertexWeightedGraphQ. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html 年

BibTeX

@misc{reference.wolfram_2024_vertexweightedgraphq, author="Wolfram Research", title="{VertexWeightedGraphQ}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html}", note=[Accessed: 15-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_vertexweightedgraphq, organization={Wolfram Research}, title={VertexWeightedGraphQ}, year={2019}, url={https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html}, note=[Accessed: 15-November-2024 ]}