VertexWeightedGraphQ

VertexWeightedGraphQ[g]

yields True if the graph g is a vertex-weighted graph, and False otherwise.

Details

Examples

open allclose all

Basic Examples  (1)

Test whether a graph is a vertex-weighted graph:

Scope  (7)

VertexWeightedGraphQ works with undirected graphs:

Directed graphs:

Weighted graphs:

Multigraphs:

Mixed graphs:

VertexWeightedGraphQ gives False for anything that is not a vertex-weighted graph:

VertexWeightedGraphQ works with large graphs:

Properties & Relations  (2)

The vertex-weighted graph is always a weighted graph:

The weighted graph is not always a vertex-weighted graph:

Possible Issues  (1)

VertexWeightedGraphQ gives False for non-explicit graphs:

Wolfram Research (2019), VertexWeightedGraphQ, Wolfram Language function, https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html.

Text

Wolfram Research (2019), VertexWeightedGraphQ, Wolfram Language function, https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html.

CMS

Wolfram Language. 2019. "VertexWeightedGraphQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html.

APA

Wolfram Language. (2019). VertexWeightedGraphQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html

BibTeX

@misc{reference.wolfram_2022_vertexweightedgraphq, author="Wolfram Research", title="{VertexWeightedGraphQ}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html}", note=[Accessed: 06-July-2022 ]}

BibLaTeX

@online{reference.wolfram_2022_vertexweightedgraphq, organization={Wolfram Research}, title={VertexWeightedGraphQ}, year={2019}, url={https://reference.wolfram.com/language/ref/VertexWeightedGraphQ.html}, note=[Accessed: 06-July-2022 ]}