WeaklyConnectedGraphQ

WeaklyConnectedGraphQ[g]

产生 True 如果图 g 是弱连通,否则为 False.

更多信息

  • WeaklyConnectedGraphQ 适于任何图对象.
  • 如果有边序列连接每对顶点,那么图是弱连通.
  • 当将图视为无向图时,如果存在连接每对顶点的边序列,则图是弱连通的.

范例

打开所有单元关闭所有单元

基本范例  (2)

检验图是否弱连通:

具有孤立点的图不是弱连通的:

范围  (6)

测试无向图:

有向图:

多图:

混合图:

对于任何非弱连通图,WeaklyConnectedGraphQ 给出 False

WeaklyConnectedGraphQ 可用于大规模图:

属性和关系  (3)

树图是弱连通的:

路径图是弱连通的:

具有 个顶点的弱连通图中最小边数是 :

具有 个顶点的路径图刚好具有 条边:

Wolfram Research (2012),WeaklyConnectedGraphQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html.

文本

Wolfram Research (2012),WeaklyConnectedGraphQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html.

CMS

Wolfram 语言. 2012. "WeaklyConnectedGraphQ." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html.

APA

Wolfram 语言. (2012). WeaklyConnectedGraphQ. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html 年

BibTeX

@misc{reference.wolfram_2024_weaklyconnectedgraphq, author="Wolfram Research", title="{WeaklyConnectedGraphQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_weaklyconnectedgraphq, organization={Wolfram Research}, title={WeaklyConnectedGraphQ}, year={2012}, url={https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html}, note=[Accessed: 21-November-2024 ]}