WSMParametricSimulateValue
WSMParametricSimulateValue["mmodel",v,{p1,p2,…}]
simulates "mmodel" for the variable v with parameters pi.
WSMParametricSimulateValue["mmodel",{v1,v2,…},{p1,p2,…}]
simulates "mmodel" for multiple variables vi.
WSMParametricSimulateValue["mmodel",vars,tmax,…]
simulates from 0 to tmax.
WSMParametricSimulateValue["mmodel",vars,{tmin,tmax},…]
simulates from tmin to tmax.
Details and Options
- WSMParametricSimulateValue gives results in terms of WSMParametricFunction objects.
- The "mmodel" refers to the fully qualified Modelica name.
- The shortest unique model name mmodel can be used where WSMNames["*.mmodel"] gives a unique match.
- WSMParametricSimulateValue takes the same options as WSMSimulate.
Examples
open allclose allBasic Examples (4)
Load Wolfram System Modeler Link:
Get a parametric solution for z with parameter a:
Evaluating with a numerical value of a gives an approximate function solution for z:
Plot the solutions for several different values of the parameter:
Get a parametric solution for z with respect to the initial value of y:
Plot the solutions for several different values of the parameter:
Options (1)
Method (1)
Use Method to choose the underlying solver:
Use ParametricNDSolve as the solver:
ParametricNDSolve is often faster than other solvers:
Applications (3)
Optimize parameters for maximizing a throw by a trebuchet:
Retrieve a parametric function for the thrown distance, varying release time and rope length:
Maximize the throwing distance, constraining parameters to reasonable ranges:
Simulate using the optimal throwing parameters:
Show the distance until the first bounce:
Plot the trajectory of the thrown object using a stored plot:
Calibrate parameters in a model by comparing to measurement data:
Compute a parametric function for the inertia variable measured:
Set up a criteria function for model fitting:
Fit parameters to the test data:
Simulate with the fitted parameters:
Show the test data and the calibrated model together:
Fit model parameters to mean of many measurements:
Create parametric functions for concentration variables based on parameters k1, k2 and k3:
Define a fitting function that evaluates at a time and parameter set:
Show the data and its distribution:
Compute the mean of the measurements at each time point:
Compute the standard deviation of measurements at each time point:
Construct the data to fit against from the mean of measurements:
Weight each time point based on the standard deviation:
Fit parameters against the data:
Properties & Relations (2)
WSMParametricSimulate works like WSMParametricSimulateValue but returns a list of rules:
WSMParametricSimulateValue returns a single parametric function:
WSMSimulateSensitivity can be used to easily compute parameter sensitivity:
Show the sensitivity of a signal to relative changes in a parameter: