WOLFRAM SYSTEM MODELER

quantile

Quantile of truncated normal distribution

Wolfram Language

In[1]:=
SystemModel["Modelica.Math.Distributions.TruncatedNormal.quantile"]
Out[1]:=

Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

Syntax

Normal.quantile(u, y_min=0, y_max=1, mu=0, sigma=1);

Description

This function computes the inverse cumulative distribution function (= quantile) according to a truncated normal distribution with minimum value u_min, maximum value u_max, mean value of original distribution mu and standard deviation of original distribution sigma (variance = sigma2). Input argument u must be in the range:

0 < u < 1

Output argument y is in the range:

y_min ≤ y ≤ y_max

Plot of the function:

For more details
of the normal distribution, see Wikipedia,
of truncated distributions, see Wikipedia.

Example

quantile(0.001)           // = 0.001087357613043849;
quantile(0.5,0,1,0.5,0.9) // = 0.5

See also

TruncatedNormal.density, TruncatedNormal.cumulative.

Syntax

y = quantile(u, y_min, y_max, mu, sigma)

Inputs (5)

u

Type: Real

Description: Random number in the range 0 <= u <= 1

y_min

Default Value: 0

Type: Real

Description: Lower limit of y

y_max

Default Value: 1

Type: Real

Description: Upper limit of y

mu

Default Value: (y_max + y_min) / 2

Type: Real

Description: Expectation (mean) value of the normal distribution

sigma

Default Value: (y_max - y_min) / 6

Type: Real

Description: Standard deviation of the normal distribution

Outputs (1)

y

Type: Real

Description: Random number u transformed according to the given distribution

Revisions

Date Description
June 22, 2015
DLR logo Initial version implemented by A. Klöckner, F. v.d. Linden, D. Zimmer, M. Otter.
DLR Institute of System Dynamics and Control