WOLFRAM SYSTEM MODELER

f_nonlinear

Nonlinear algebraic equation in one unknown: y = f_nonlinear(x,p,X)

Wolfram Language

In[1]:=
SystemModel["Modelica.Media.Common.OneNonLinearEquation.f_nonlinear"]
Out[1]:=

Inputs (4)

x

Type: Real

Description: Independent variable of function

p

Default Value: 0.0

Type: Real

Description: Disregarded variables (here always used for pressure)

X

Default Value: fill(0, 0)

Type: Real[:]

Description: Disregarded variables (her always used for composition)

f_nonlinear_data

Type: f_nonlinear_Data

Description: Additional data for the function

Outputs (1)

y

Type: Real

Description: = f_nonlinear(x)

Extended by (10)

f_nonlinear

Modelica.Media.Incompressible.TableBased.T_ps.Internal

P is smuggled in via vector

f_nonlinear

Modelica.Media.Incompressible.TableBased.T_ph.Internal

P is smuggled in via vector

f_nonlinear

Modelica.Media.IdealGases.Common.MixtureGasNasa.T_psX.Internal

Note that this function always sees the complete mass fraction vector

f_nonlinear

Modelica.Media.IdealGases.Common.MixtureGasNasa.T_hX.Internal

f_nonlinear

Modelica.Media.IdealGases.Common.SingleGasNasa.T_ps.Internal

f_nonlinear

Modelica.Media.IdealGases.Common.SingleGasNasa.T_h.Internal

f_nonlinear

Modelica.Media.Air.MoistAir.T_psX.Internal

f_nonlinear

Modelica.Media.Air.MoistAir.T_phX.Internal

f_nonlinear

Modelica.Media.Air.MoistAir.saturationTemperature.Internal

f_nonlinear

Modelica.Media.Examples.SolveOneNonlinearEquation.Inverse_sine.Inverse_sine_definition

Non-linear equation to be solved