WOLFRAM SYSTEM MODELER

solve

Solve f_nonlinear(x_zero)=y_zero; f_nonlinear(x_min) - y_zero and f_nonlinear(x_max)-y_zero must have different sign

Wolfram Language

In[1]:=
SystemModel["Modelica.Media.Common.OneNonLinearEquation.solve"]
Out[1]:=

Syntax

x_zero = solve(y_zero, x_min, x_max, pressure, X, f_nonlinear_data, x_tol)

Inputs (7)

y_zero

Type: Real

Description: Determine x_zero, such that f_nonlinear(x_zero) = y_zero

x_min

Type: Real

Description: Minimum value of x

x_max

Type: Real

Description: Maximum value of x

pressure

Default Value: 0.0

Type: Real

Description: Disregarded variables (here always used for pressure)

X

Default Value: fill(0, 0)

Type: Real[:]

Description: Disregarded variables (here always used for composition)

f_nonlinear_data

Type: f_nonlinear_Data

Description: Additional data for function f_nonlinear

x_tol

Default Value: 100 * Modelica.Constants.eps

Type: Real

Description: Relative tolerance of the result

Outputs (1)

x_zero

Type: Real

Description: f_nonlinear(x_zero) = y_zero

Extended by (8)

solve

Modelica.Media.IdealGases.Common.MixtureGasNasa.T_psX.Internal

solve

Modelica.Media.IdealGases.Common.MixtureGasNasa.T_hX.Internal

solve

Modelica.Media.IdealGases.Common.SingleGasNasa.T_ps.Internal

solve

Modelica.Media.IdealGases.Common.SingleGasNasa.T_h.Internal

solve

Modelica.Media.Air.MoistAir.T_psX.Internal

solve

Modelica.Media.Air.MoistAir.T_phX.Internal

solve

Modelica.Media.Air.MoistAir.saturationTemperature.Internal

solve

Modelica.Media.Examples.SolveOneNonlinearEquation.Inverse_sine.Inverse_sine_definition

Solution algorithm of non-linear equation