WOLFRAM SYSTEM MODELER

# Inverse_sh_TX

Solve h = h_TX(TX) for T, if h is given for ideal gas NASA

# Wolfram Language

In[1]:=
`SystemModel["Modelica.Media.Examples.SolveOneNonlinearEquation.Inverse_sh_TX"]`
Out[1]:=

# Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

This models computes the temperature `Th` for predefined specific enthalpy `h1` via numerical inversion of function Modelica.Media.IdealGases.Common.Functions.h_T. The specific enthalpy `h2` is computed as check variable from temperature `Th` and must be identical to `h1`.

In an analogous manner, the temperature `Ts` is computed for predefined specific entropy `s1` via numerical inversion of function Modelica.Media.IdealGases.Common.Functions.s0_T. The specific entropy `s2` is computed as check variable from temperature `Ts` and must be identical to `s1`.

The numerical computation of the inverse function is performed by function Modelica.Math.Nonlinear.solveOneNonlinearEquation in both cases.

# Parameters (8)

T_min Value: 300 Type: Temperature (K) Description: Vary temperature linearly from T_min (time=0) up to T_max (time=1) Value: 500 Type: Temperature (K) Description: Vary temperature linearly from T_min (time=0) up to T_max (time=1) Value: 1.0e5 Type: Pressure (Pa) Description: Fixed pressure in model Value: Medium.h_TX(T_min, X) Type: SpecificEnthalpy (J/kg) Description: Specific enthalpy at T_min Value: Medium.h_TX(T_max, X) Type: SpecificEnthalpy (J/kg) Description: Specific enthalpy at T_max Value: Medium.specificEntropy(Medium.setState_pTX(p, T_min, Medium.reference_X)) Type: SpecificEntropy (J/(kg⋅K)) Description: Specific entropy at T_min Value: Medium.specificEntropy(Medium.setState_pTX(p, T_max, Medium.reference_X)) Type: SpecificEntropy (J/(kg⋅K)) Description: Specific entropy at T_max Value: Medium.reference_X Type: MassFraction[4] Description: Mass fraction vector