WOLFRAM SYSTEM MODELER
Version_3_0Version 3.0 (March 1, 2008) |
SystemModel["Modelica.UsersGuide.ReleaseNotes.Version_3_0"]
This information is part of the Modelica Standard Library maintained by the Modelica Association.
Version 3.0 is not backward compatible to previous versions. A conversion script is provided to transform models and libraries of previous versions to the new version. Therefore, conversion should be automatic.
The following changes are present for the whole library:
Physical parameters, such as a resistance, mass, gear ratio, do not have a meaningful default and in nearly all cases, the user of the corresponding component has to provide values for such parameters. If the user forgets this, a tool cannot provide diagnostics, since a default value is present in the library (such as 1 Ohm for the resistance). In most cases the model will simulate but will give wrong results due to wrong parameter values. To improve this situation, all physical parameter declarations in the Modelica Standard Library have been changed, so that the previous default becomes a start value. For example, the above declaration is changed to:parameter Modelica.SIunits.Resistance R=1;
This is a backward compatible change and completely equivalent from the perspective of the Modelica language. It is, however, advised that tools will print a warning or optionally an error message, if the start value of a parameter is defined, but no value for the parameter is given via a modification. Furthermore, it is expected, that the input field of a parameter menu is empty, if no default equation is defined, but only a start value. This shows clearly to the modeler that a value has to be provided.parameter Modelica.SIunits.Resistance R(start=1);
The following new components have been added
to existing libraries (note, the names in parentheses
are the new sublibrary names that are introduced in version 3.0):
Blocks.Examples. | |
InverseModel | Demonstrates the construction of an inverse model. |
Blocks.Math. | |
InverseBlockConstraints | Construct inverse model by requiring that two inputs and two outputs are identical (replaces the previously, unbalanced, TwoInputs and TwoOutputs blocks). |
Electrical.Machines.Utilities | |
TransformerData | A record that calculates required impedances (parameters) from nominal data of transformers. |
Mechanics.MultiBody.Examples.Rotational3DEffects | |
GyroscopicEffects ActuatedDrive MovingActuatedDrive GearConstraint |
New examples to demonstrate the usage of the Rotational library in combination with multi-body components. |
Mechanics.MultiBody.Sensors | |
AbsolutePosition AbsoluteVelocity AbsoluteAngles AbsoluteAngularVelocity RelativePosition RelativeVelocity RelativeAngles RelativeAngularVelocity |
New sensors to measure one vector. |
TransformAbsoluteVector TransformRelativeVector |
Transform absolute and/or relative vector into another frame. |
Mechanics.Rotational.(Components) | |
Disc | Right flange is rotated by a fixed angle with respect to left flange |
IdealRollingWheel | Simple 1-dim. model of an ideal rolling wheel without inertia |
Mechanics.Translational.Sensors | |
RelPositionSensor RelSpeedSensor RelAccSensor PowerSensor |
Relative position sensor, i.e., distance between two flanges Relative speed sensor Relative acceleration sensor Ideal power sensor |
Mechanics.Translational(.Components) | |
SupportFriction Brake InitializeFlange |
Model of friction due to support Model of a brake, base on Coulomb friction Initializes a flange with pre-defined position, speed and acceleration . |
Mechanics.Translational(.Sources) | |
Force2 LinearSpeedDependentForce QuadraticSpeedDependentForce ConstantForce ConstantSpeed ForceStep |
Force acting on 2 flanges Force linearly dependent on flange speed Force quadratic dependent on flange speed Constant force source Constant speed source Force step |
The following existing components
have been changed in a
non-backward compatible way
(the conversion script transforms models and libraries
of previous versions to the new version. Therefore, conversion
should be automatic):
Blocks.Continuous. | |
CriticalDamping | New parameter "normalized" to define whether filter is provided in normalized or non-normalized form. Default is "normalized = true". The previous implementation was a non-normalized filter. The conversion script automatically introduces the modifier "normalized=false" for existing models. |
Blocks.Interfaces. | |
RealInput RealOutput |
Removed "SignalType", since extending from a replaceable class
and this is not allowed in Modelica 3. The conversion script removes modifiers to SignalType. |
RealSignal IntegerSignal BooleanSignal |
Moved to library ObsoleteModelica3, since these connectors
are no longer allowed in Modelica 3 (prefixes input and/or output are required). |
Blocks.Interfaces.Adaptors. | |
AdaptorReal AdaptorBoolean AdaptorInteger |
Moved to library ObsoleteModelica3, since the models are not "balanced".
These are completely obsolete adaptors between the Real, Boolean, Integer signal connectors of version 1.6 and version ≥ 2.1 of the Modelica Standard Library. |
Blocks.Math. | |
ConvertAllUnits | Moved to library ObsoleteModelica3, since extending from a replaceable class
and this is not allowed in Modelica 3. It would be possible to rewrite this model to use a replaceable component. However, the information about the conversion cannot be visualized in the icon in this case. |
Blocks.Math.UnitConversions. | |
TwoInputs TwoOutputs |
Moved to library ObsoleteModelica3, since the models are not "balanced".
A new component "InverseBlockConstraints" is provided instead that has the same feature, but is "balanced". |
Electrical.Analog.Basic. | |
HeatingResistor | The heatPort has to be connected; otherwise the component Resistor (without heatPort) has to be used. cardinality() is only used to check whether the heatPort is connected. |
Electrical.Polyphase.Examples. | |
Changed the instance names of components used in the examples to more up-to-date style. | |
Electrical.Machines. | |
Moved package Machines.Examples.Utilities to Machines.Utilities | |
Removed all nonSIunits; especially in DCMachines parameter NonSIunits.AngularVelocity_rpm rpmNominal was replaced by parameter SIunits.AngularVelocity wNominal | |
Changed the following component variable and parameter names to be more concise: Removed suffix "DamperCage" from all synchronous machines since the user can choose whether the damper cage is present or not.
RotorAngle ... RotorDisplacementAngle | |
Interfaces. | Moved as much code as possible from specific machine models to partials to reduce redundant code. |
Interfaces.Adapter | Removed to avoid cardinality; instead, the following solution has been implemented: |
Sensors.RotorDisplacementAngle Interfaces.PartialBasicMachine |
Introduced parameter Boolean useSupport=false "enable / disable (=fixed stator) support" The rotational support connector is only present with useSupport = true; otherwise the stator is fixed internally. |
Electrical.Machines.Examples. | |
Changed the names of the examples to more meaningful names. Changed the instance names of components used in the examples to more up-to-date style. | |
SMEE_Generator | Initialization of smee.phiMechanical with fixed=true |
Mechanics.MultiBody. | |
World | Changed default value of parameter driveTrainMechanics3D from false to true. 3-dim. effects in Rotor1D, Mounting1D and BevelGear1D are therefore taken into account by default (previously this was only the case, if world.driveTrainMechanics3D was explicitly set). |
Mechanics.MultiBody.Forces. | |
FrameForce FrameTorque FrameForceAndTorque |
Models removed, since functionality now available via Force, Torque, ForceAndTorque |
WorldForce WorldTorque WorldForceAndTorque Force Torque ForceAndTorque |
Connector frame_resolve is optionally enabled via parameter resolveInFrame . Forces and torques and be resolved in all meaningful frames defined by enumeration resolveInFrame. |
Mechanics.MultiBody.Frames. | |
length normalize |
Removed functions, since available also in Modelica.Math.Vectors
The conversion script changes the references correspondingly. |
Mechanics.MultiBody.Joints. | |
Prismatic ActuatedPrismatic Revolute ActuatedRevolute Cylindrical Universal Planar Spherical FreeMotion |
Changed initialization, by replacing initial value parameters with
start/fixed attributes. When start/fixed attributes are properly supported in the parameter menu by a Modelica tool, the initialization is considerably simplified for the user and the implementation is much simpler. Replaced parameter "enforceStates" by the more general built-in enumeration stateSelect=StateSelection.xxx. The conversion script automatically transforms from the "old" to the "new" forms. |
Revolute ActuatedRevolute |
Parameter "planarCutJoint" in the "Advanced" menu of "Revolute" and of
"ActuatedRevolute" removed. A new joint "RevolutePlanarLoopConstraint" introduced that defines the constraints of a revolute joint as cut-joint in a planar loop. This change was needed in order that the revolute joint can be properly used in advanced model checking. ActuatedRevolute joint removed. Flange connectors of Revolute joint can be enabled with parameter useAxisFlange. |
Prismatic ActuatedPrismatic |
ActuatedPrismatic joint removed. Flange connectors of Prismatic joint can be enabled with parameter useAxisFlange. |
Assemblies | Assembly joint implementation slightly changed, so that
annotation "structurallyIncomplete" could be removed (all Assembly joint models are now "balanced"). |
Mechanics.MultiBody.Joints.Internal | |
RevoluteWithLengthConstraint PrismaticWithLengthConstraint |
These joints should not be used by a user of the MultiBody library. They are only provided to built-up the MultiBody.Joints.Assemblies.JointXYZ joints. These two joints have been changed in a slightly not backward compatible way, in order that the usage in the Assemblies.JointXYZ joints results in balanced models (no conversion is provided for this change since the user should not have used these joints and the conversion would be too complicated): In releases before version 3.0 of the Modelica Standard Library, it was possible to activate the torque/force projection equation (= cut-torque/-force projected to the rotation/translation axis must be identical to the drive torque/force of flange axis) via parameter axisTorqueBalance. This is no longer possible, since otherwise this model would not be "balanced" (= same number of unknowns as equations). Instead, when using this model in version 3.0 and later versions, the torque/force projection equation must be provided in the Advanced menu of joints Joints.SphericalSpherical and Joints.UniversalSpherical via the new parameter "constraintResidue". |
Mechanics.MultiBody.Parts. | |
BodyBox BodyCylinder |
Changed unit of parameter density from g/cm3 to the SI unit kg/m3
in order to allow stricter unit checking. The conversion script multiplies previous density values with 1000. |
Body BodyShape BodyBox BodyCylinder PointMass Rotor1D |
Changed initialization, by replacing initial value parameters with
start/fixed attributes. When start/fixed attributes are properly supported in the parameter menu by a Modelica tool, the initialization is considerably simplified for the user and the implementation is much simpler. The conversion script automatically transforms from the "old" to the "new" form of initialization. |
Mechanics.MultiBody.Sensors. | |
AbsoluteSensor RelativeSensor CutForceAndTorque |
New design of sensor components: Via Boolean parameters signal connectors for the respective vectors are enabled/disabled. It is not possible to automatically convert models to this new design. Instead, references in existing models are changed to ObsoleteModelice3. This means that these models must be manually adapted. |
CutForce CutTorque |
Slightly new design. The force and/or torque component can be
resolved in world, frame_a, or frame_resolved. Existing models are automatically converted. |
Mechanics.Rotational. | |
Moved components to structured sub-packages (Sources, Components) | |
Inertia SpringDamper RelativeStates |
Changed initialization, by replacing initial value parameters with
start/fixed attributes. When start/fixed attributes are properly supported in the parameter menu by a Modelica tool, the initialization is considerably simplified for the user and the implementation is much simpler. Parameter "stateSelection" in "Inertia" and "SpringDamper" replaced by the built-in enumeration stateSelect=StateSelection.xxx. Introduced the "stateSelect" enumeration in "RelativeStates". The conversion script automatically transforms from the "old" to the "new" forms. |
LossyGear GearBox |
Renamed gear ratio parameter "i" to "ratio", in order to have a
consistent naming convention. Existing models are automatically converted. |
SpringDamper ElastoBacklash Clutch OneWayClutch |
Relative quantities (phi_rel, w_rel) are used as states, if possible
(due to StateSelect.prefer). In most cases, relative states in drive trains are better suited as absolute states. This change might give changes in the selected states of existing models. This might give rise to problems if, e.g., the initialization was not completely defined in a user model, since the default initialization heuristic may give different initial values. |
Mechanics.Translational. | |
Moved components to structured sub-packages (Sources, Components) | |
Adaptions corresponding to Rotational | |
Stop | Renamed to Components.MassWithStopAndFriction to be more concise. MassWithStopAndFriction is not available with a support connector, since the reaction force can't be modeled in a meaningful way due to reinit of velocity v. Until a sound implementation of a hard stop is available, the old model may be used. |
Media. | |
constant nX constant nXi constant reference_X BaseProperties |
The package constant nX = nS, now always, even for single species media. This also allows to define mixtures with only 1 element. The package constant nXi=if fixedX then 0 else if reducedX or nS==1 then nS - 1 else nS. This required that all BaseProperties for single species media get an additional equation to define the composition X as {1.0} (or reference_X, which is {1.0} for single species). This will also mean that all user defined single species media need to be updated by that equation. |
SIunits. | |
CelsiusTemperature | Removed, since no SI unit. The conversion script changes references to SIunits.Conversions.NonSIunits.Temperature_degC |
ThermodynamicTemperature TemperatureDifference |
Added annotation "absoluteValue=true/false"
in order that unit checking is possible (the unit checker needs to know for a unit that has an offset, whether it is used as absolute or as a relative number) |
SIunits.Conversions.NonSIunits. | |
Temperature_degC Temperature_degF Temperature_degRk |
Added annotation "absoluteValue=true"
in order that unit checking is possible (the unit checker needs to know for a unit that has an offset, whether it is used as absolute or as a relative number) |
StateGraph.Examples. | |
ControlledTanks | The connectors of the ControlledTanks did not fulfill the new restrictions of Modelica 3. This has been fixed. |
Utilities | Replacing inflow, outflow by connectors inflow1, inflow2, outflow1, outflow2 with appropriate input/output prefixes in order to fulfill the restrictions of Modelica 3 to arrive at balanced models. No conversion is provided, since too difficult and since the non-backward compatible change is in an example. |
Thermal.FluidHeatFlow.Sensors. | |
pSensor TSensor dpSensor dTSensor m_flowSensor V_flowSensor H_flowSensor |
renamed to: PressureSensor TemperatureSensor RelPressureSensor RelTemperatureSensor MassFlowSensor VolumeFlowSensor EnthalpyFlowSensor |
Thermal.FluidHeatFlow.Sources. | |
Ambient PrescribedAmbient |
available as one combined component Ambient Boolean parameters usePressureInput and useTemperatureInput decide whether pressure and/or temperature are constant or prescribed |
ConstantVolumeFlow PrescribedVolumeFlow |
available as one combined component VolumeFlow Boolean parameter useVolumeFlowInput decides whether volume flow is constant or prescribed |
ConstantPressureIncrease PrescribedPressureIncrease |
available as one combined component PressureIncrease Boolean parameter usePressureIncreaseInput decides whether pressure increase is constant or prescribed |
Thermal.FluidHeatFlow.Examples. | |
Changed the instance names of components used in the examples to more up-to-date style. | |
Thermal.HeatTransfer.(Components) | |
HeatCapacitor | Initialization changed: SteadyStateStart removed. Instead
start/fixed values for T and der_T (initial temperature and its derivative). |
HeatCapacitor ThermalConductor ThermalConvection BodyRadiation TemperatureSensor RelTemperatureSensor HeatFlowSensor FixedTemperature PrescribedTemperature FixedHeatFlow PrescribedHeatFlow |
Moved components to sub-packages: Components.HeatCapacitor Components.ThermalConductor Components.ThermalConvection Components.BodyRadiation Sensors.TemperatureSensor Sensors.RelTemperatureSensor Sensors.HeatFlowSensor Sources.FixedTemperature Sources.PrescribedTemperature Sources.FixedHeatFlow Sources.PrescribedHeatFlow |
Thermal.FluidHeatFlow.Examples. | |
Changed the instance names of components used in the examples to more up-to-date style. |
The following existing components
have been improved in a
backward compatible way:
Modelica.* | Parameter declarations, input and output function arguments without description
strings improved by providing meaningful description texts. |
Modelica.Blocks.Continuous. | |
TransferFunction | Internal scaling of the controller canonical states introduced in order to enlarge the range of transfer functions where the default relative tolerance of the simulator is sufficient. |
Butterworth CriticalDamping |
Documentation improved and plots of the filter characteristics added. |
Electrical.Analog.Basic. | |
EMF | New parameter "useSupport" to optionally enable a support connector. |
Icons. | |
RectangularSensor RoundSensor |
Removed drawing from the diagram layer (kept drawing only in
icon layer), in order that this icon can be used in situations where components are dragged in the diagram layer. |
Math.Vectors. | |
normalize | Implementation changed, so that the result is always continuous (previously, this was not the case for small vectors: normalize(eps,eps)). |
Mechanics.MultiBody. | |
Renamed non-standard keywords defineBranch, defineRoot, definePotentialRoot,
isRooted to the standard names: Connections.branch/.root/.potentialRoot/.isRooted. | |
Frames | Added annotation "Inline=true" to all one-line functions (which should be all inlined). |
Mechanics.MultiBody.Parts. | |
Mounting1D Rotor1D BevelGear1D |
Changed implementation so that no longer modifiers for connector
variables are used, because this violates the restrictions on "balanced models" of Modelica 3. |
Mechanics.Rotational. | |
InitializeFlange | Changed implementation so that counting unknowns and equations is possible without actual values of parameters. |
Thermal.FluidHeatFlow.Interfaces. | |
TwoPort | Introduced parameter Real tapT(final min=0, final max=1)=1 that defines the temperature of the heatPort between inlet and outlet. |
StateGraph. | |
InitialStep InitialStepWithSignal Step StepWithSignal |
Changed implementation so that no longer modifiers for output
variables are used, because this violates the restrictions on "balanced models" of Modelica 3. |
The following critical errors have been fixed (i.e., errors
that can lead to wrong simulation results):
Electrical.Analog.Examples. | |
CauerLowPassSC | Wrong calculation of Capacitor1 both in Rn and Rp corrected (C=clock/R instead of C=clock*R) |
Mechanics.MultiBody.Parts. | |
Rotor1D | The 3D reaction torque was not completely correct and gave in some situations a wrong result. This bug should not influence the movement of a multi-body system, but only the constraint torques are sometimes not correct. |
Mechanics.Rotational. | |
ElastoBacklash | If the damping torque was too large, the reaction torque could "pull" which is unphysical. The component was newly written by limiting the damping torque in such a case so that "pulling" torques can no longer occur. Furthermore, during initialization the characteristics is made continuous to reduce numerical errors. The relative angle and relative angular velocities are used as states, if possible (StateSelect.prefer), since relative quantities lead usually to better behavior. |
Position Speed Accelerate Move |
The movement of the flange was wrongly defined as absolute;
this is corrected as relative to connector support. For Accelerate, it was necessary to rename RealInput a to a_ref, as well as the start values phi_start to phi.start and w_start to w.start. The conversion script performs the necessary conversion of existing models automatically. |
Media.Interfaces. | |
PartialSimpleIdealGasMedium | Inconsistency in reference temperature corrected. This may give
different results for functions: specificEnthalpy, specificInternalEnergy, specificGibbsEnergy, specificHelmholtzEnergy. |
Media.Air. | |
specificEntropy | Small bug in entropy computation of ideal gas mixtures corrected. |
Media.IdealGases.Common.MixtureGasNasa | |
specificEntropy | Small bug in entropy computation of ideal gas mixtures corrected. |
The following uncritical errors have been fixed (i.e., errors
that do not lead to wrong simulation results, but, e.g.,
units are wrong or errors in documentation):
Blocks.Tables. | |
CombiTable2D | Documentation improved. |
Electrica.Digital.Gates | |
AndGate NandGate OrGate NorGate XorGate XnorGate |
The number of inputs was not correctly propagated
to the included base model. This gave a translation error, if the number of inputs was changed (and not the default used). |
Electrica.Digital.Sources | |
Pulse | Model differently implemented, so that warning message about "cannot properly initialize" is gone. |
Mechanics.Rotational. | |
BearingFriction Clutch OneWayClutch Brake Gear |
Declaration of table parameter changed from table[:,:] to table[:,2]. |
Modelica.Mechanics.MultiBody.Examples.Loops.Utilities. | |
GasForce | Unit of variable "press" corrected (from Pa to bar) |
StateGraph.Examples. | |
SimpleFriction | The internal parameter k is defined and calculated with the appropriate unit. |
Thermal.FluidHeatFlow.Interfaces. | |
SimpleFriction | The internal parameter k is defined and calculated with the appropriate unit. |