designs a lowpass Bessel filter of order n and cutoff frequency 1.
BesselFilterModel[{n,ωc}]
uses the cutoff frequency ωc.
BesselFilterModel[{n,ωc},var]
expresses the model in terms of the variable var.


BesselFilterModel
designs a lowpass Bessel filter of order n and cutoff frequency 1.
BesselFilterModel[{n,ωc}]
uses the cutoff frequency ωc.
BesselFilterModel[{n,ωc},var]
expresses the model in terms of the variable var.
Details

- BesselFilterModel returns the designed filter as a TransferFunctionModel.
- BesselFilterModel[n] uses machine precision to return a filter with attenuation of
at frequency 1.
Examples
open all close allBasic Examples (2)
Scope (1)
Applications (1)
Properties & Relations (4)
Show the denominator of the transfer function as a Bessel polynomial:
Find the poles of a Bessel filter by solving for the roots of the denominator:
Extract poles using TransferFunctionPoles:
Related Guides
History
Text
Wolfram Research (2012), BesselFilterModel, Wolfram Language function, https://reference.wolfram.com/language/ref/BesselFilterModel.html.
CMS
Wolfram Language. 2012. "BesselFilterModel." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BesselFilterModel.html.
APA
Wolfram Language. (2012). BesselFilterModel. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BesselFilterModel.html
BibTeX
@misc{reference.wolfram_2025_besselfiltermodel, author="Wolfram Research", title="{BesselFilterModel}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/BesselFilterModel.html}", note=[Accessed: 09-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_besselfiltermodel, organization={Wolfram Research}, title={BesselFilterModel}, year={2012}, url={https://reference.wolfram.com/language/ref/BesselFilterModel.html}, note=[Accessed: 09-August-2025]}