gives the Dedekind eta modular elliptic function .


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • DedekindEta is defined only in the upper half of the complex τ plane. It is not defined for real τ.
  • The argument τ is the ratio of Weierstrass halfperiods .
  • DedekindEta satisfies where is the discriminant, given in terms of Weierstrass invariants by .
  • For certain special arguments, DedekindEta automatically evaluates to exact values.
  • DedekindEta can be evaluated to arbitrary numerical precision.
  • DedekindEta automatically threads over lists.
Introduced in 1996