RiemannR[x]
gives the Riemann prime counting function .


RiemannR
RiemannR[x]
gives the Riemann prime counting function .
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- For
, the Riemann prime counting function is given by
.
- RiemannR[z] has a branch cut discontinuity in the complex z plane running from
to
.
- RiemannR can be evaluated to arbitrary numerical precision.
- RiemannR automatically threads over lists.
Examples
open all close allBasic Examples (2)
Scope (6)
Evaluate for complex arguments:
The precision of the output tracks the precision of the input:
Simple exact values are generated automatically:
RiemannR threads element-wise over lists:
TraditionalForm formatting:
Applications (1)
The behavior of RiemannR near the origin:
The largest root of the Riemann prime counting function, which solves a problem originally posed by Waldvogel:
See Also
Related Guides
Related Links
History
Text
Wolfram Research (2008), RiemannR, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannR.html.
CMS
Wolfram Language. 2008. "RiemannR." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RiemannR.html.
APA
Wolfram Language. (2008). RiemannR. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RiemannR.html
BibTeX
@misc{reference.wolfram_2025_riemannr, author="Wolfram Research", title="{RiemannR}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/RiemannR.html}", note=[Accessed: 16-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_riemannr, organization={Wolfram Research}, title={RiemannR}, year={2008}, url={https://reference.wolfram.com/language/ref/RiemannR.html}, note=[Accessed: 16-August-2025]}