TimeSeriesForecast

TimeSeriesForecast[tproc,data,k]
gives the k-step-ahead forecast beyond data according to the time series process tproc.

TimeSeriesForecast[tsmod,k]
gives the k-step-ahead forecast for TimeSeriesModel tsmod.

Details and OptionsDetails and Options

  • TimeSeriesForecast[tproc,{x0,,xm},k] will give Expectation[x[m+k]x[0]x0x[m]xm], where , the expected value of the process given data.
  • TimeSeriesForecast allows tproc to be a time series process such as ARProcess, ARMAProcess, SARIMAProcess, etc.
  • The data can be a list of numeric values , a list of time-value pairs , or TemporalData.
  • The following forecast specifications can be given:
  • kat the k^(th) step ahead
    {kmax}at , , steps ahead
    {kmin,kmax}at , , steps ahead
    {{k1,k2,}}use explicit steps ahead
  • TimeSeriesForecast returns the forecasted value if k is an integer and TemporalData otherwise.
  • The default for k is 1.
  • TimeSeriesForecast supports a Method option with the following settings:
  • Automaticautomatically determine the method
    "AR"approximate with a large-order AR process
    "Covariance"exact covariance function-based
    "Kalman"use Kalman filter
  • The mean squared errors of the prediction are the compounded noise errors and are given as MetaInformation in the TemporalData output. For , the mean squared errors can be accessed by forecast["MeanSquaredErrors"].

ExamplesExamplesopen allclose all

Basic Examples  (3)Basic Examples  (3)

Forecast three steps ahead for an ARProcess:

In[1]:=
Click for copyable input
In[2]:=
Click for copyable input
Out[2]=

An ARMAProcess:

In[3]:=
Click for copyable input
Out[3]=

Predict the seventh value from TimeSeriesModel:

In[1]:=
Click for copyable input
In[2]:=
Click for copyable input
Out[2]=

Mean squared error of the forecast:

In[3]:=
Click for copyable input
Out[3]=

Forecast a vector-valued time series process:

In[1]:=
Click for copyable input

Find the forecast for the next 10 steps:

In[2]:=
Click for copyable input
Out[2]=

Plot the data and the forecast for each component:

In[3]:=
Click for copyable input
Out[3]=
Introduced in 2012
(9.0)
| Updated in 2014
(10.0)