"DecisionTree"
(Machine Learning Method)

  • Method for Predict and Classify.
  • Models class probabilities or predicts values, using a decision tree constructed using the CART algorithm.
  • Details & Suboptions
  • A decision tree is a flow chartlike structure in which each internal node represents a "test" on a feature, each branch represents the outcome of the test, and each leaf represents a class or value distribution.
  • The following options can be given:
  • "DistributionSmoothing"1regularization parameter
    "FeatureFraction"1the fraction of features to be randomly selected for training
  • Examples

    open allclose all

    Basic Examples  (2)

    Train a predictor function on labeled examples:

    In[1]:=
    Click for copyable input
    Out[1]=

    Look at the PredictorInformation:

    In[2]:=
    Click for copyable input
    Out[2]=

    Predict a new example:

    In[3]:=
    Click for copyable input
    Out[3]=

    Generate some data and visualize it:

    In[1]:=
    Click for copyable input
    Out[1]=

    Train a predictor function on it:

    In[2]:=
    Click for copyable input
    Out[2]=

    Compare the data with the predicted values and look at the standard deviation:

    In[3]:=
    Click for copyable input
    Out[3]=

    Options  (4)

    See Also

    Classify  Predict  ClassifierFunction  PredictorFunction  ClassifierMeasurements  PredictorMeasurements  ClassifierInformation  PredictorInformation  SequencePredict  ClusterClassify

    Related Demonstrations

    Related Methods