Elliptic Functions

With careful standardization of argument conventions, Mathematica provides full coverage of all standard types of elliptic functions, with arbitrary-precision numerical evaluation for complex values of all parameters, as well as extensive symbolic transformations and simplifications.

ReferenceReference

Jacobi Elliptic Functions

JacobiSN ▪ JacobiCN ▪ JacobiDN ▪ JacobiCD ▪ JacobiCS ▪ JacobiDC ▪ JacobiDS ▪ JacobiNC ▪ JacobiND ▪ JacobiNS ▪ JacobiSC ▪ JacobiSD

Inverse Jacobi Elliptic Functions

InverseJacobiSN ▪ InverseJacobiCN ▪ InverseJacobiDN ▪ InverseJacobiCD ▪ InverseJacobiCS ▪ InverseJacobiDC ▪ InverseJacobiDS ▪ InverseJacobiNC ▪ InverseJacobiND ▪ InverseJacobiNS ▪ InverseJacobiSC ▪ InverseJacobiSD

Weierstrass Elliptic Functions

WeierstrassP ▪ WeierstrassPPrime ▪ WeierstrassSigma ▪ WeierstrassZeta

Inverse Weierstrass Elliptic Functions

InverseWeierstrassP

Theta Functions

EllipticTheta ▪ EllipticThetaPrime ▪ SiegelTheta

NevilleThetaC ▪ NevilleThetaD ▪ NevilleThetaN ▪ NevilleThetaS

Elliptic Exponential Functions

EllipticExp ▪ EllipticExpPrime ▪ EllipticLog

JacobiAmplitude convert from argument and parameter to amplitude

EllipticNomeQ convert from parameter to nome

InverseEllipticNomeQ convert from nome to parameter

WeierstrassInvariants convert from half-periods to invariants

WeierstrassHalfPeriods convert from invariants to half-periods

New to Mathematica? Find your learning path »
Have a question? Ask support »