DedekindEta
✖
DedekindEta
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- DedekindEta is defined only in the upper half of the complex τ plane. It is not defined for real τ.
- The argument τ is the ratio of Weierstrass half‐periods
.
- DedekindEta satisfies
where
is the discriminant, given in terms of Weierstrass invariants by
.
- For certain special arguments, DedekindEta automatically evaluates to exact values.
- DedekindEta can be evaluated to arbitrary numerical precision.
- DedekindEta automatically threads over lists.
- DedekindEta can be used with CenteredInterval objects. »
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Scope (14)Survey of the scope of standard use cases
Numerical Evaluation (4)

https://wolfram.com/xid/0ywcubs65tnf-l274ju


https://wolfram.com/xid/0ywcubs65tnf-cksbl4


https://wolfram.com/xid/0ywcubs65tnf-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0ywcubs65tnf-y7k4a

Evaluate efficiently at high precision:

https://wolfram.com/xid/0ywcubs65tnf-di5gcr


https://wolfram.com/xid/0ywcubs65tnf-bq2c6r

DedekindEta can be used with CenteredInterval objects:

https://wolfram.com/xid/0ywcubs65tnf-cmdnbi

Specific Values (2)

https://wolfram.com/xid/0ywcubs65tnf-nww7l

DedekindEta threads elementwise over lists:

https://wolfram.com/xid/0ywcubs65tnf-pj5yw

Visualization (2)
Plot the DedekindEta function for various parameters:

https://wolfram.com/xid/0ywcubs65tnf-drb1t8

Plot the real part of the DedekindEta function in three dimensions:

https://wolfram.com/xid/0ywcubs65tnf-i75zi3

Plot the imaginary part of the DedekindEta function in three dimensions:

https://wolfram.com/xid/0ywcubs65tnf-ij0b0x

Function Properties (6)
Complex domain of DedekindEta:

https://wolfram.com/xid/0ywcubs65tnf-cl7ele

DedekindEta is a periodic function:

https://wolfram.com/xid/0ywcubs65tnf-bx99ar

DedekindEta is an analytic function on its domain:

https://wolfram.com/xid/0ywcubs65tnf-wtkikd

It is not an entire function, however:

https://wolfram.com/xid/0ywcubs65tnf-h5x4l2

It has both singularities and discontinuities:

https://wolfram.com/xid/0ywcubs65tnf-mdtl3h


https://wolfram.com/xid/0ywcubs65tnf-mn5jws

DedekindEta is not injective over the complexes:

https://wolfram.com/xid/0ywcubs65tnf-poz8g


https://wolfram.com/xid/0ywcubs65tnf-ctca0g

DedekindEta is not surjective:

https://wolfram.com/xid/0ywcubs65tnf-cxk3a6


https://wolfram.com/xid/0ywcubs65tnf-frlnsr

TraditionalForm formatting:

https://wolfram.com/xid/0ywcubs65tnf-mre0k

Applications (3)Sample problems that can be solved with this function
The modular discriminant at I is given by DedekindEta:

https://wolfram.com/xid/0ywcubs65tnf-lr2vd

Compare with the general definition:

https://wolfram.com/xid/0ywcubs65tnf-zkdlz

Plot the DedekindEta function in the upper half of the complex plane:

https://wolfram.com/xid/0ywcubs65tnf-m3r9fq


https://wolfram.com/xid/0ywcubs65tnf-8v5zw0
Relation with DedekindEta:

https://wolfram.com/xid/0ywcubs65tnf-mwacl5

Properties & Relations (2)Properties of the function, and connections to other functions
Machine-precision input is insufficient to give a correct answer:

https://wolfram.com/xid/0ywcubs65tnf-bhiqxx

With exact input, the answer is correct:

https://wolfram.com/xid/0ywcubs65tnf-hurk9v

Because DedekindEta is a numerical function with numeric arguments, it might be considered a numeric quantity but because of its boundary of analyticity, it might not be evaluatable to a number:

https://wolfram.com/xid/0ywcubs65tnf-d8xpgj


https://wolfram.com/xid/0ywcubs65tnf-lsbdzd


https://wolfram.com/xid/0ywcubs65tnf-c84nd8

Wolfram Research (1996), DedekindEta, Wolfram Language function, https://reference.wolfram.com/language/ref/DedekindEta.html (updated 2021).
Text
Wolfram Research (1996), DedekindEta, Wolfram Language function, https://reference.wolfram.com/language/ref/DedekindEta.html (updated 2021).
Wolfram Research (1996), DedekindEta, Wolfram Language function, https://reference.wolfram.com/language/ref/DedekindEta.html (updated 2021).
CMS
Wolfram Language. 1996. "DedekindEta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/DedekindEta.html.
Wolfram Language. 1996. "DedekindEta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/DedekindEta.html.
APA
Wolfram Language. (1996). DedekindEta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DedekindEta.html
Wolfram Language. (1996). DedekindEta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DedekindEta.html
BibTeX
@misc{reference.wolfram_2025_dedekindeta, author="Wolfram Research", title="{DedekindEta}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/DedekindEta.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_dedekindeta, organization={Wolfram Research}, title={DedekindEta}, year={2021}, url={https://reference.wolfram.com/language/ref/DedekindEta.html}, note=[Accessed: 04-April-2025
]}