HoeffdingD
✖
HoeffdingD
Details

- HoeffdingD[v1,v2] gives Hoeffding's dependence measure between v1 and v2.
- Hoeffding's is a measure of dependence based on the relative order of elements in the two lists.
- Hoeffding's between v1 and v2 is given by
, where
is the number of observations in v1,
,
,
,
for
,
is the rank of v1i,
is the rank of v2i, and
is equal to Boole[a<b].
- The arguments v1 and v2 can be any real‐valued vectors of equal length greater than 5.
- For a matrix m with
columns, HoeffdingD[m] is a
×
matrix of the dependence measures between columns of m.
- For an
×
matrix m1 and an
×
matrix m2, HoeffdingD[m1,m2] is a
×
matrix of the dependence measures between columns of m1 and columns of m2.
- HoeffdingD[dist,i,j] is given by 30 Expectation[(F[x,y]-G[x]H[y])^2,{x,y}disti,j], where F[x,y], G[x], and H[y] are the CDFs of the
,
, and
marginals of dist respectively.
- HoeffdingD[dist] gives a matrix where the
entry is given by HoeffdingD[dist,i,j].
Examples
open allclose allBasic Examples (4)Summary of the most common use cases
Hoeffding's for two vectors:

https://wolfram.com/xid/0tqnwmszzmb9sv-gugb6d

https://wolfram.com/xid/0tqnwmszzmb9sv-fulot0


https://wolfram.com/xid/0tqnwmszzmb9sv-9un6t

https://wolfram.com/xid/0tqnwmszzmb9sv-hz9gv1

Hoeffding's for two matrices:

https://wolfram.com/xid/0tqnwmszzmb9sv-bv14aj

https://wolfram.com/xid/0tqnwmszzmb9sv-ce2wv

https://wolfram.com/xid/0tqnwmszzmb9sv-i51zwj

Compute Hoeffding's for a bivariate distribution:

https://wolfram.com/xid/0tqnwmszzmb9sv-f7dh9d

https://wolfram.com/xid/0tqnwmszzmb9sv-mzz2lg


https://wolfram.com/xid/0tqnwmszzmb9sv-nwpxl1

Scope (7)Survey of the scope of standard use cases
Data (4)
Exact input yields exact output:

https://wolfram.com/xid/0tqnwmszzmb9sv-eta06h

Approximate input yields approximate output:

https://wolfram.com/xid/0tqnwmszzmb9sv-usqqq


https://wolfram.com/xid/0tqnwmszzmb9sv-httrs6


https://wolfram.com/xid/0tqnwmszzmb9sv-kt50m4

SparseArray data can be used:

https://wolfram.com/xid/0tqnwmszzmb9sv-cz9dkm

Distributions and Processes (3)
Hoeffding's matrix for a continuous multivariate distribution:

https://wolfram.com/xid/0tqnwmszzmb9sv-fnv00k


https://wolfram.com/xid/0tqnwmszzmb9sv-tekwa

Hoeffding's matrix for derived distributions:

https://wolfram.com/xid/0tqnwmszzmb9sv-c3a9y


https://wolfram.com/xid/0tqnwmszzmb9sv-cy97of

https://wolfram.com/xid/0tqnwmszzmb9sv-etkwz


https://wolfram.com/xid/0tqnwmszzmb9sv-hxjash

https://wolfram.com/xid/0tqnwmszzmb9sv-gm1a47


https://wolfram.com/xid/0tqnwmszzmb9sv-edj4ah

Hoeffding's matrix for a random process at times and
:

https://wolfram.com/xid/0tqnwmszzmb9sv-hv1ygl

Applications (3)Sample problems that can be solved with this function
Hoeffding's is typically used to detect non-monotonic dependency structures:

https://wolfram.com/xid/0tqnwmszzmb9sv-dz3nkj

https://wolfram.com/xid/0tqnwmszzmb9sv-dp75n

Hoeffding's tends to be larger for dependent vectors:

https://wolfram.com/xid/0tqnwmszzmb9sv-bruog5

The value tends to 0 for independent vectors:

https://wolfram.com/xid/0tqnwmszzmb9sv-lp2ywe

Hoeffding's can detect linear dependence:

https://wolfram.com/xid/0tqnwmszzmb9sv-eyfz2q

https://wolfram.com/xid/0tqnwmszzmb9sv-c1b9b4

SpearmanRho and KendallTau are more sensitive to linear dependence:

https://wolfram.com/xid/0tqnwmszzmb9sv-deujkj

Hoeffding's can also detect many types of nonlinear dependence:

https://wolfram.com/xid/0tqnwmszzmb9sv-iwph7r

https://wolfram.com/xid/0tqnwmszzmb9sv-fgog5o

https://wolfram.com/xid/0tqnwmszzmb9sv-e7iyc7

https://wolfram.com/xid/0tqnwmszzmb9sv-dd08fp

Use HoeffdingDTest to determine if the value is statistically significant:

https://wolfram.com/xid/0tqnwmszzmb9sv-cty8ts

Properties & Relations (4)Properties of the function, and connections to other functions
Larger values of Hoeffding's indicate increasing dependence:

https://wolfram.com/xid/0tqnwmszzmb9sv-zet3g

https://wolfram.com/xid/0tqnwmszzmb9sv-o4ucu0

https://wolfram.com/xid/0tqnwmszzmb9sv-l3nnwr

Hoeffding's matrix is symmetric:

https://wolfram.com/xid/0tqnwmszzmb9sv-31bc2

https://wolfram.com/xid/0tqnwmszzmb9sv-mmzf9d

The diagonal elements of Hoeffding's matrix are 1:

https://wolfram.com/xid/0tqnwmszzmb9sv-o1vsb7

https://wolfram.com/xid/0tqnwmszzmb9sv-h7qlge

Hoeffding's for a continuous bivariate distribution:

https://wolfram.com/xid/0tqnwmszzmb9sv-bfewud

https://wolfram.com/xid/0tqnwmszzmb9sv-ewdode


https://wolfram.com/xid/0tqnwmszzmb9sv-grblhu


https://wolfram.com/xid/0tqnwmszzmb9sv-hqcqde

Wolfram Research (2012), HoeffdingD, Wolfram Language function, https://reference.wolfram.com/language/ref/HoeffdingD.html.
Text
Wolfram Research (2012), HoeffdingD, Wolfram Language function, https://reference.wolfram.com/language/ref/HoeffdingD.html.
Wolfram Research (2012), HoeffdingD, Wolfram Language function, https://reference.wolfram.com/language/ref/HoeffdingD.html.
CMS
Wolfram Language. 2012. "HoeffdingD." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HoeffdingD.html.
Wolfram Language. 2012. "HoeffdingD." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HoeffdingD.html.
APA
Wolfram Language. (2012). HoeffdingD. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HoeffdingD.html
Wolfram Language. (2012). HoeffdingD. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HoeffdingD.html
BibTeX
@misc{reference.wolfram_2025_hoeffdingd, author="Wolfram Research", title="{HoeffdingD}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/HoeffdingD.html}", note=[Accessed: 30-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_hoeffdingd, organization={Wolfram Research}, title={HoeffdingD}, year={2012}, url={https://reference.wolfram.com/language/ref/HoeffdingD.html}, note=[Accessed: 30-March-2025
]}