MathieuCharacteristicA
gives the characteristic value for even Mathieu functions with characteristic exponent r and parameter q.
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- The characteristic value gives the value of the parameter in for which the solution has the form , where is an even function of with period .
- For certain special arguments, MathieuCharacteristicA automatically evaluates to exact values.
- MathieuCharacteristicA can be evaluated to arbitrary numerical precision.
- MathieuCharacteristicA automatically threads over lists.
Examples
open allclose allBasic Examples (3)
Scope (20)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix MathieuCharacteristicA function using MatrixFunction:
Specific Values (2)
Simple exact values are generated automatically:
Find the positive maximum of MathieuCharacteristicA[2,q ]:
Visualization (3)
Plot the MathieuCharacteristicA function for integer parameters:
Plot the MathieuCharacteristicA function for noninteger parameters:
Plot the real part of MathieuCharacteristicA:
Plot the imaginary part of MathieuCharacteristicA:
Function Properties (7)
The real domain of MathieuCharacteristicA:
Approximate function range of :
is neither non-increasing nor non-decreasing:
MathieuCharacteristicA threads elementwise over lists:
TraditionalForm formatting:
Series Expansions (2)
Find the Taylor expansion using Series:
Applications (4)
Symmetric periodic solutions of the Mathieu differential equation:
This shows the stability diagram for the Mathieu equation:
As a function of the first argument, MathieuCharacteristicA is a piecewise continuous function (called bands and band gaps in solid state physics):
Solve the Laplace equation in an ellipse using separation of variables:
This plots an eigenfunction. It vanishes at the ellipse boundary:
Properties & Relations (1)
MathieuCharacteristicA is a special case of SpheroidalEigenvalue:
Text
Wolfram Research (1996), MathieuCharacteristicA, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuCharacteristicA.html.
CMS
Wolfram Language. 1996. "MathieuCharacteristicA." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MathieuCharacteristicA.html.
APA
Wolfram Language. (1996). MathieuCharacteristicA. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MathieuCharacteristicA.html