

WignerD
Details

- The Wigner D-function
gives the matrix element of a rotation operator parametrized by Euler angles in a
–dimensional unitary representation of a rotation group when parameters
,
,
are physical, i.e. all integers or half-integers such that
.
- For unphysical parameters, WignerD is defined by an analytic continuation.
- The Wolfram Language uses phase conventions where
.
Examples
open all close allBasic Examples (1)
Applications (1)
Properties & Relations (4)
For vanishing parameter m1, WignerD reduces to SphericalHarmonicY:
Matrix elements of the Wigner D-matrix satisfy certain symmetry relations:
WignerD functions form an orthogonal basis on the group:
The product of two WignerD functions can be expanded in terms of WignerD functions using ClebschGordan coefficients:
See Also
SphericalHarmonicY ClebschGordan ThreeJSymbol JacobiP LegendreP EulerMatrix EulerAngles PauliMatrix
Function Repository: WignerMatrix
Related Guides
Related Links
History
Text
Wolfram Research (2010), WignerD, Wolfram Language function, https://reference.wolfram.com/language/ref/WignerD.html.
CMS
Wolfram Language. 2010. "WignerD." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WignerD.html.
APA
Wolfram Language. (2010). WignerD. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WignerD.html
BibTeX
@misc{reference.wolfram_2025_wignerd, author="Wolfram Research", title="{WignerD}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WignerD.html}", note=[Accessed: 16-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_wignerd, organization={Wolfram Research}, title={WignerD}, year={2010}, url={https://reference.wolfram.com/language/ref/WignerD.html}, note=[Accessed: 16-August-2025]}