 
     
   WignerD
Details
 
   - The Wigner D-function  gives the matrix element of a rotation operator parametrized by Euler angles in a gives the matrix element of a rotation operator parametrized by Euler angles in a –dimensional unitary representation of a rotation group when parameters –dimensional unitary representation of a rotation group when parameters , , , , are physical, i.e. all integers or half-integers such that are physical, i.e. all integers or half-integers such that . .
- For unphysical parameters, WignerD is defined by an analytic continuation.
- The Wolfram Language uses phase conventions where ![TemplateBox[{j, {m, _, 1}, {m, _, 2}, psi, theta, phi}, WignerD]=exp(ⅈ m_1 psi+ⅈ m_2phi) TemplateBox[{j, {m, _, 1}, {m, _, 2}, 0, theta, 0}, WignerD] TemplateBox[{j, {m, _, 1}, {m, _, 2}, psi, theta, phi}, WignerD]=exp(ⅈ m_1 psi+ⅈ m_2phi) TemplateBox[{j, {m, _, 1}, {m, _, 2}, 0, theta, 0}, WignerD]](Files/WignerD.en/10.png) . .
Examples
open all close allBasic Examples (1)
Applications (1)
Properties & Relations (4)
For vanishing parameter m1, WignerD reduces to SphericalHarmonicY:
Matrix elements of the Wigner D-matrix satisfy certain symmetry relations:
WignerD functions form an orthogonal basis on the  group:
 group:
The product of two WignerD functions can be expanded in terms of WignerD functions using ClebschGordan coefficients:
See Also
SphericalHarmonicY ClebschGordan ThreeJSymbol JacobiP LegendreP EulerMatrix EulerAngles PauliMatrix
Function Repository: WignerMatrix
Related Guides
Related Links
History
Text
Wolfram Research (2010), WignerD, Wolfram Language function, https://reference.wolfram.com/language/ref/WignerD.html.
CMS
Wolfram Language. 2010. "WignerD." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WignerD.html.
APA
Wolfram Language. (2010). WignerD. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WignerD.html
BibTeX
@misc{reference.wolfram_2025_wignerd, author="Wolfram Research", title="{WignerD}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WignerD.html}", note=[Accessed: 31-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_wignerd, organization={Wolfram Research}, title={WignerD}, year={2010}, url={https://reference.wolfram.com/language/ref/WignerD.html}, note=[Accessed: 31-October-2025]}






![2/(2 j_1+1) (4 pi)^2TemplateBox[{{{j, _, 1}, ,, {j, _, 2}}}, KroneckerDeltaSeq]TemplateBox[{{{m, _, {(, 11, )}}, ,, {m, _, {(, 21, )}}}}, KroneckerDeltaSeq]TemplateBox[{{{m, _, {(, 12, )}}, ,, {m, _, {(, 22, )}}}}, KroneckerDeltaSeq] 2/(2 j_1+1) (4 pi)^2TemplateBox[{{{j, _, 1}, ,, {j, _, 2}}}, KroneckerDeltaSeq]TemplateBox[{{{m, _, {(, 11, )}}, ,, {m, _, {(, 21, )}}}}, KroneckerDeltaSeq]TemplateBox[{{{m, _, {(, 12, )}}, ,, {m, _, {(, 22, )}}}}, KroneckerDeltaSeq]](Files/WignerD.en/12.png)