# Operations on Power Series

*Mathematica* allows you to perform many operations on power series. In all cases, *Mathematica* gives results only to as many terms as can be justified from the accuracy of your input.

Here is a power series accurate to fourth order in

.

Out[1]= | |

When you square the power series, you get another power series, also accurate to fourth order.

Out[2]= | |

Taking the logarithm gives you the result

, but only to order

.

Out[3]= | |

*Mathematica* keeps track of the orders of power series in much the same way as it keeps track of the precision of approximate real numbers. Just as with numerical calculations, there are operations on power series which can increase, or decrease, the precision (or order) of your results.

Here is a power series accurate to order

.

Out[4]= | |

This gives a power series that is accurate only to order

.

Out[5]= | |

*Mathematica* also allows you to do calculus with power series.

Here is a power series for

.

Out[6]= | |

Here is its derivative with respect to

.

Out[7]= | |

Integrating with respect to

gives back the original power series.

Out[8]= | |

When you perform an operation that involves both a normal expression and a power series, *Mathematica* "absorbs" the normal expression into the power series whenever possible.

The

is automatically absorbed into the power series.

Out[9]= | |

The

is also absorbed into the power series.

Out[10]= | |

If you add

Sin[x],

*Mathematica* generates the appropriate power series for

Sin[x], and combines it with the power series you have.

Out[11]= | |

*Mathematica* also absorbs expressions that multiply power series. The symbol

is assumed to be independent of

.

Out[12]= | |

*Mathematica* knows how to apply a wide variety of functions to power series. However, if you apply an arbitrary function to a power series, it is impossible for *Mathematica* to give you anything but a symbolic result.

*Mathematica* does not know how to apply the function

to a power series, so it just leaves the symbolic result.

Out[13]= | |