Limit

Limit[f[x],xx*]

gives the limit xx*f(x).

Limit[f[x1,,xn],{x1,,xn}]

gives the nested limit f (x1,,xn).

Limit[f[x1,,xn],{x1,,xn}{,,}]

gives the multivariate limit f (x1,,xn).

Details and Options

  • Limit is also known as function limit, directed limit, iterated limit, nested limit and multivariate limit.
  • Limit computes the limiting value f* of a function f as its variables x or xi get arbitrarily close to their limiting point x* or .
  • By using the character , entered as lim or \[Limit], with underscripts or subscripts, limits can be entered as follows:
  • flimit in the default direction
    flimit from above
    flimit from below
    flimit in the complex plane
    fLimit[f,{x1,,xn}]
  • For a finite limit point x* and {,,} and finite limit value f*:
  • Limit[f[x],xx*]f*for every there is such that 0<TemplateBox[{{x, -, {x, ^, *}}}, Abs]<delta(epsilon,x^*) implies TemplateBox[{{{f, (, x, )}, -, {f, ^, *}}}, Abs]<epsilon
    Limit[f[x1,,xn],{x1,,xn}{,,}]f*for every there is such that 0<TemplateBox[{{{, {{{x, _, 1}, -, {x, _, {(, 1, )}, ^, *}}, ,, ..., ,, {{x, _, n}, -, {x, _, {(, n, )}, ^, *}}}, }}}, Norm]<delta(epsilon,x^*) implies TemplateBox[{{{f, (, {{x, _, 1}, ,, ..., ,, {x, _, n}}, )}, -, {f, ^, *}}}, Abs]<epsilon
  • For an infinite limit point and finite limit value f*:
  • Limit[f[x],x]f*for every there is such that implies TemplateBox[{{{f, (, x, )}, -, {f, ^, *}}}, Abs]<epsilon
    Limit[f[x1,,xn],{x1,,xn}{,,}]f*for every there is such that implies TemplateBox[{{{f, (, {{x, _, 1}, ,, ..., ,, {x, _, n}}, )}, -, {f, ^, *}}}, Abs]<epsilon
  • Limit returns Indeterminate when it can prove the limit does not exist. MinLimit and MaxLimit can frequently be used to compute the minimum and maximum limit of a function if its limit does not exist.
  • Limit returns unevaluated or an Interval when no limit can be found. If an Interval is returned, there are no guarantees that this is the smallest possible interval.
  • The following options can be given:
  • Assumptions$Assumptionsassumptions on parameters
    DirectionRealsdirections to approach the limit point
    GenerateConditionsAutomaticwhether to generate conditions on parameters
    MethodAutomaticmethod to use
    PerformanceGoal"Quality"aspects of performance to optimize
  • Possible settings for Direction include:
  • Reals or "TwoSided"from both real directions
    "FromAbove" or -1from above or larger values
    "FromBelow" or +1from below or smaller values
    Complexesfrom all complex directions
    Exp[ θ]in the direction
    {dir1,,dirn}use direction diri for variable xi independently
  • DirectionExp[ θ] at x* indicates the direction tangent of a curve approaching the limit point x*.
  • Possible settings for GenerateConditions include:
  • Automaticnon-generic conditions only
    Trueall conditions
    Falseno conditions
    Nonereturn unevaluated if conditions are needed
  • Possible settings for PerformanceGoal include $PerformanceGoal, "Quality" and "Speed". With the "Quality" setting, Limit typically solves more problems or produces simpler results, but it potentially uses more time and memory.

Examples

open allclose all

Basic Examples  (3)

Limit at a point of discontinuity:

In[1]:=
Click for copyable input
Out[1]=
In[2]:=
Click for copyable input
Out[2]=

Limit at infinity:

In[1]:=
Click for copyable input
Out[1]=
In[2]:=
Click for copyable input
Out[2]=

Limit from above:

In[1]:=
Click for copyable input
Out[1]=

Limit from below:

In[2]:=
Click for copyable input
Out[2]=

The two-sided limit does not exist:

In[3]:=
Click for copyable input
Out[3]=
In[4]:=
Click for copyable input
Out[4]=

Scope  (35)

Options  (13)

Applications  (23)

Properties & Relations  (13)

Possible Issues  (1)

Interactive Examples  (1)

Neat Examples  (2)

See Also

DiscreteLimit  Series  Residue  MaxLimit  MinLimit  Derivative  Assumptions  DiracDelta  PrincipalValue

Tutorials

Introduced in 1988
(1.0)
| Updated in 2017
(11.2)