Combinatorica`
Combinatorica`

BellmanFord

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

BellmanFord[g,v]

gives a shortest-path spanning tree and associated distances from vertex v of graph g. The shortest-path spanning tree is given by a list in which element is the predecessor of vertex in the shortest-path spanning tree. BellmanFord works correctly even when the edge weights are negative, provided there are no negative cycles.

Details

Wolfram Research (2012), BellmanFord, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html.

Text

Wolfram Research (2012), BellmanFord, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html.

BibTeX

@misc{reference.wolfram_2021_bellmanford, author="Wolfram Research", title="{BellmanFord}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html}", note=[Accessed: 19-September-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_bellmanford, organization={Wolfram Research}, title={BellmanFord}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html}, note=[Accessed: 19-September-2021 ]}

CMS

Wolfram Language. 2012. "BellmanFord." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html.

APA

Wolfram Language. (2012). BellmanFord. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html