BipartiteQ[g]
yields True if graph g is bipartite.


BipartiteQ
BipartiteQ[g]
yields True if graph g is bipartite.
Details and Options
- BipartiteQ functionality is now available in the built-in Wolfram Language function BipartiteGraphQ.
- To use BipartiteQ, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
Examples
Basic Examples (2)
BipartiteQ has been superseded by BipartiteGraphQ:
See Also
Tech Notes
Related Guides
-
▪
- Graph Properties ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), BipartiteQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/BipartiteQ.html.
CMS
Wolfram Language. 2012. "BipartiteQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/BipartiteQ.html.
APA
Wolfram Language. (2012). BipartiteQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/BipartiteQ.html
BibTeX
@misc{reference.wolfram_2025_bipartiteq, author="Wolfram Research", title="{BipartiteQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/BipartiteQ.html}", note=[Accessed: 09-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_bipartiteq, organization={Wolfram Research}, title={BipartiteQ}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/BipartiteQ.html}, note=[Accessed: 09-August-2025]}