Eccentricity[g]
gives the eccentricity of each vertex of graph g, the maximum length among all shortest paths from
.


Eccentricity
Eccentricity[g]
gives the eccentricity of each vertex of graph g, the maximum length among all shortest paths from
.
Details and Options
- Eccentricity functionality is now available in the built-in Wolfram Language function VertexEccentricity.
- To use Eccentricity, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
Examples
Basic Examples (2)
Eccentricity has been superseded by VertexEccentricity:
Tech Notes
Related Guides
-
▪
- Graph Algorithms ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2007), Eccentricity, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/Eccentricity.html.
CMS
Wolfram Language. 2007. "Eccentricity." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/Eccentricity.html.
APA
Wolfram Language. (2007). Eccentricity. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/Eccentricity.html
BibTeX
@misc{reference.wolfram_2025_eccentricity, author="Wolfram Research", title="{Eccentricity}", year="2007", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/Eccentricity.html}", note=[Accessed: 09-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_eccentricity, organization={Wolfram Research}, title={Eccentricity}, year={2007}, url={https://reference.wolfram.com/language/Combinatorica/ref/Eccentricity.html}, note=[Accessed: 09-August-2025]}