Combinatorica`
Combinatorica`

IndependentSetQ

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

IndependentSetQ[g,i]

yields True if the vertices in list i define an independent set in graph g.

Details

Wolfram Research (2012), IndependentSetQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/IndependentSetQ.html.

Text

Wolfram Research (2012), IndependentSetQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/IndependentSetQ.html.

BibTeX

@misc{reference.wolfram_2021_independentsetq, author="Wolfram Research", title="{IndependentSetQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/IndependentSetQ.html}", note=[Accessed: 27-September-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_independentsetq, organization={Wolfram Research}, title={IndependentSetQ}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/IndependentSetQ.html}, note=[Accessed: 27-September-2021 ]}

CMS

Wolfram Language. 2012. "IndependentSetQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/IndependentSetQ.html.

APA

Wolfram Language. (2012). IndependentSetQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/IndependentSetQ.html