Combinatorica`
Combinatorica`

MaximumClique

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

MaximumClique[g]

finds a largest clique in graph g.

MaximumClique[g,k]

returns a k-clique, if such a thing exists in g; otherwise it returns {}.

Details and Options

Wolfram Research (2012), MaximumClique, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html.

Text

Wolfram Research (2012), MaximumClique, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html.

CMS

Wolfram Language. 2012. "MaximumClique." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html.

APA

Wolfram Language. (2012). MaximumClique. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html

BibTeX

@misc{reference.wolfram_2024_maximumclique, author="Wolfram Research", title="{MaximumClique}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html}", note=[Accessed: 02-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_maximumclique, organization={Wolfram Research}, title={MaximumClique}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html}, note=[Accessed: 02-January-2025 ]}