MaximumIndependentSet[g]
finds a largest independent set of graph g.
    
   MaximumIndependentSet
MaximumIndependentSet[g]
finds a largest independent set of graph g.
Details and Options
- MaximumIndependentSet functionality is now available in the built-in Wolfram Language function FindIndependentVertexSet.
 - To use MaximumIndependentSet, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
 
Tech Notes
Related Guides
- 
    ▪
    
 - Constructing Graphs ▪
 - Graphs & Networks ▪
 - Graph Visualization ▪
 - Computation on Graphs ▪
 - Graph Construction & Representation ▪
 - Graphs and Matrices ▪
 - Graph Properties & Measurements ▪
 - Graph Operations and Modifications ▪
 - Statistical Analysis ▪
 - Social Network Analysis ▪
 - Graph Properties ▪
 - Mathematical Data Formats ▪
 - Discrete Mathematics
 
Text
Wolfram Research (2012), MaximumIndependentSet, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html.
CMS
Wolfram Language. 2012. "MaximumIndependentSet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html.
APA
Wolfram Language. (2012). MaximumIndependentSet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html
BibTeX
@misc{reference.wolfram_2025_maximumindependentset, author="Wolfram Research", title="{MaximumIndependentSet}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html}", note=[Accessed: 03-November-2025]}
BibLaTeX
@online{reference.wolfram_2025_maximumindependentset, organization={Wolfram Research}, title={MaximumIndependentSet}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MaximumIndependentSet.html}, note=[Accessed: 03-November-2025]}