Combinatorica`
Combinatorica`

MaximumSpanningTree

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

MaximumSpanningTree[g]

uses Kruskal's algorithm to find a maximum spanning tree of graph g.

更多信息和选项

Wolfram Research (2012),MaximumSpanningTree,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html.

文本

Wolfram Research (2012),MaximumSpanningTree,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html.

CMS

Wolfram 语言. 2012. "MaximumSpanningTree." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html.

APA

Wolfram 语言. (2012). MaximumSpanningTree. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html 年

BibTeX

@misc{reference.wolfram_2024_maximumspanningtree, author="Wolfram Research", title="{MaximumSpanningTree}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_maximumspanningtree, organization={Wolfram Research}, title={MaximumSpanningTree}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html}, note=[Accessed: 21-November-2024 ]}