Combinatorica`
Combinatorica`

McGeeGraph

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

McGeeGraph

returns the unique -cage, a -regular graph with girth .

Details

Wolfram Research (2012), McGeeGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/McGeeGraph.html.

Text

Wolfram Research (2012), McGeeGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/McGeeGraph.html.

BibTeX

@misc{reference.wolfram_2021_mcgeegraph, author="Wolfram Research", title="{McGeeGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/McGeeGraph.html}", note=[Accessed: 27-September-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_mcgeegraph, organization={Wolfram Research}, title={McGeeGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/McGeeGraph.html}, note=[Accessed: 27-September-2021 ]}

CMS

Wolfram Language. 2012. "McGeeGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/McGeeGraph.html.

APA

Wolfram Language. (2012). McGeeGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/McGeeGraph.html