Combinatorica`
Combinatorica`

MeredithGraph

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

MeredithGraph

returns a 4-regular, 4-connected graph that is not Hamiltonian, providing a counterexample to a conjecture by C. St. J. A. Nash-Williams.

Details

Wolfram Research (2012), MeredithGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MeredithGraph.html.

Text

Wolfram Research (2012), MeredithGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MeredithGraph.html.

BibTeX

@misc{reference.wolfram_2021_meredithgraph, author="Wolfram Research", title="{MeredithGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MeredithGraph.html}", note=[Accessed: 27-September-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_meredithgraph, organization={Wolfram Research}, title={MeredithGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MeredithGraph.html}, note=[Accessed: 27-September-2021 ]}

CMS

Wolfram Language. 2012. "MeredithGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MeredithGraph.html.

APA

Wolfram Language. (2012). MeredithGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MeredithGraph.html