Combinatorica`
Combinatorica`

NoPerfectMatchingGraph

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

NoPerfectMatchingGraph

returns a connected graph with 16 vertices that contains no perfect matching.

Details

Examples

Basic Examples  (2)

NoPerfectMatchingGraph has been superseded by GraphData:

Wolfram Research (2012), NoPerfectMatchingGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/NoPerfectMatchingGraph.html.

Text

Wolfram Research (2012), NoPerfectMatchingGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/NoPerfectMatchingGraph.html.

BibTeX

@misc{reference.wolfram_2021_noperfectmatchinggraph, author="Wolfram Research", title="{NoPerfectMatchingGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/NoPerfectMatchingGraph.html}", note=[Accessed: 27-September-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_noperfectmatchinggraph, organization={Wolfram Research}, title={NoPerfectMatchingGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/NoPerfectMatchingGraph.html}, note=[Accessed: 27-September-2021 ]}

CMS

Wolfram Language. 2012. "NoPerfectMatchingGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/NoPerfectMatchingGraph.html.

APA

Wolfram Language. (2012). NoPerfectMatchingGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/NoPerfectMatchingGraph.html