ShakeGraph[g,d]
performs a random perturbation of the vertices of graph g, with each vertex moving, at most, a distance d from its original position.
    
   ShakeGraph
ShakeGraph[g,d]
performs a random perturbation of the vertices of graph g, with each vertex moving, at most, a distance d from its original position.
Details and Options
- ShakeGraph functionality is now available in the built-in Wolfram Language function VertexCoordinates.
 - To use ShakeGraph, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
 
See Also
Tech Notes
Related Guides
- 
    ▪
    
 - Displaying Graphs ▪
 - Graphs & Networks ▪
 - Graph Visualization ▪
 - Computation on Graphs ▪
 - Graph Construction & Representation ▪
 - Graphs and Matrices ▪
 - Graph Properties & Measurements ▪
 - Graph Operations and Modifications ▪
 - Statistical Analysis ▪
 - Social Network Analysis ▪
 - Graph Properties ▪
 - Mathematical Data Formats ▪
 - Discrete Mathematics
 
Text
Wolfram Research (2012), ShakeGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/ShakeGraph.html.
CMS
Wolfram Language. 2012. "ShakeGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/ShakeGraph.html.
APA
Wolfram Language. (2012). ShakeGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/ShakeGraph.html
BibTeX
@misc{reference.wolfram_2025_shakegraph, author="Wolfram Research", title="{ShakeGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/ShakeGraph.html}", note=[Accessed: 04-November-2025]}
BibLaTeX
@online{reference.wolfram_2025_shakegraph, organization={Wolfram Research}, title={ShakeGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/ShakeGraph.html}, note=[Accessed: 04-November-2025]}