ShakeGraph[g,d]
performs a random perturbation of the vertices of graph g, with each vertex moving, at most, a distance d from its original position.


ShakeGraph
ShakeGraph[g,d]
performs a random perturbation of the vertices of graph g, with each vertex moving, at most, a distance d from its original position.
Details and Options
- ShakeGraph functionality is now available in the built-in Wolfram Language function VertexCoordinates.
- To use ShakeGraph, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
See Also
Tech Notes
Related Guides
-
▪
- Displaying Graphs ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), ShakeGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/ShakeGraph.html.
CMS
Wolfram Language. 2012. "ShakeGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/ShakeGraph.html.
APA
Wolfram Language. (2012). ShakeGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/ShakeGraph.html
BibTeX
@misc{reference.wolfram_2025_shakegraph, author="Wolfram Research", title="{ShakeGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/ShakeGraph.html}", note=[Accessed: 09-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_shakegraph, organization={Wolfram Research}, title={ShakeGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/ShakeGraph.html}, note=[Accessed: 09-August-2025]}