Combinatorica`
Combinatorica`

SimpleQ

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

SimpleQ[g]

yields True if g is a simple graph, meaning it has no multiple edges and contains no self-loops.

Details

Examples

Basic Examples  (2)

SimpleQ has been superseded by SimpleGraphQ:

Wolfram Research (2012), SimpleQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/SimpleQ.html.

Text

Wolfram Research (2012), SimpleQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/SimpleQ.html.

BibTeX

@misc{reference.wolfram_2021_simpleq, author="Wolfram Research", title="{SimpleQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/SimpleQ.html}", note=[Accessed: 27-September-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_simpleq, organization={Wolfram Research}, title={SimpleQ}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/SimpleQ.html}, note=[Accessed: 27-September-2021 ]}

CMS

Wolfram Language. 2012. "SimpleQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/SimpleQ.html.

APA

Wolfram Language. (2012). SimpleQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/SimpleQ.html