Combinatorica`
Combinatorica`

UnitransitiveGraph

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

UnitransitiveGraph

returns a 20-vertex, 3-unitransitive graph, discovered by Coxeter, that is not isomorphic to a 4-cage or a 5-cage.

Details

Wolfram Research (2012), UnitransitiveGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html.

Text

Wolfram Research (2012), UnitransitiveGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html.

BibTeX

@misc{reference.wolfram_2021_unitransitivegraph, author="Wolfram Research", title="{UnitransitiveGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html}", note=[Accessed: 27-September-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_unitransitivegraph, organization={Wolfram Research}, title={UnitransitiveGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html}, note=[Accessed: 27-September-2021 ]}

CMS

Wolfram Language. 2012. "UnitransitiveGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html.

APA

Wolfram Language. (2012). UnitransitiveGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html