ComputationalGeometry`
ComputationalGeometry`

DelaunayTriangulation

As of Version 10, all the functionality of the ComputationalGeometry package is built into the Wolfram System. »

DelaunayTriangulation[{{x1,y1},{x2,y2},}]

yields the planar Delaunay triangulation of the points {{x1,y1},}.

更多信息和选项

  • DelaunayTriangulation functionality is now available in the built-in Wolfram Language function DelaunayMesh.
  • To use DelaunayTriangulation, you first need to load the Computational Geometry Package using Needs["ComputationalGeometry`"].
  • The Delaunay triangulation is represented by a vertex adjacency list, one entry for each unique point {xi,yi} indicating the adjacent vertices in counterclockwise order.
Wolfram Research (2012),DelaunayTriangulation,Wolfram 语言函数,https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html.

文本

Wolfram Research (2012),DelaunayTriangulation,Wolfram 语言函数,https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html.

CMS

Wolfram 语言. 2012. "DelaunayTriangulation." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html.

APA

Wolfram 语言. (2012). DelaunayTriangulation. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html 年

BibTeX

@misc{reference.wolfram_2024_delaunaytriangulation, author="Wolfram Research", title="{DelaunayTriangulation}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html}", note=[Accessed: 26-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_delaunaytriangulation, organization={Wolfram Research}, title={DelaunayTriangulation}, year={2012}, url={https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html}, note=[Accessed: 26-December-2024 ]}