ComputationalGeometry`
ComputationalGeometry`

DelaunayTriangulation

As of Version 10, all the functionality of the ComputationalGeometry package is built into the Wolfram System. »

DelaunayTriangulation[{{x1,y1},{x2,y2},}]

yields the planar Delaunay triangulation of the points {{x1,y1},}.

Details

  • DelaunayTriangulation functionality is now available in the built-in Wolfram Language function DelaunayMesh.
  • To use DelaunayTriangulation, you first need to load the Computational Geometry Package using Needs["ComputationalGeometry`"].
  • The Delaunay triangulation is represented by a vertex adjacency list, one entry for each unique point {xi,yi} indicating the adjacent vertices in counterclockwise order.
Wolfram Research (2012), DelaunayTriangulation, Wolfram Language function, https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html.

Text

Wolfram Research (2012), DelaunayTriangulation, Wolfram Language function, https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html.

BibTeX

@misc{reference.wolfram_2021_delaunaytriangulation, author="Wolfram Research", title="{DelaunayTriangulation}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html}", note=[Accessed: 21-October-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_delaunaytriangulation, organization={Wolfram Research}, title={DelaunayTriangulation}, year={2012}, url={https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html}, note=[Accessed: 21-October-2021 ]}

CMS

Wolfram Language. 2012. "DelaunayTriangulation." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html.

APA

Wolfram Language. (2012). DelaunayTriangulation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulation.html