ComputationalGeometry`
ComputationalGeometry`

DelaunayTriangulationQ

As of Version 10, all the functionality of the ComputationalGeometry package is built into the Wolfram System. »

DelaunayTriangulationQ[{{x1,y1},{x2,y2},},val]

gives True if the triangulation of the points {{x1,y1},} represented by the vertex adjacency list val is a Delaunay triangulation and False otherwise.

DelaunayTriangulationQ[{{x1,y1},{x2,y2},},val,hull]

takes hull to be the convex hull index list.

Details

  • To use DelaunayTriangulationQ, you first need to load the Computational Geometry Package using Needs["ComputationalGeometry`"].
  • The convex hull index list hull and the elements of the vertex adjacency list val must both list vertices in counterclockwise order.
Wolfram Research (2012), DelaunayTriangulationQ, Wolfram Language function, https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulationQ.html.

Text

Wolfram Research (2012), DelaunayTriangulationQ, Wolfram Language function, https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulationQ.html.

BibTeX

@misc{reference.wolfram_2021_delaunaytriangulationq, author="Wolfram Research", title="{DelaunayTriangulationQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulationQ.html}", note=[Accessed: 16-October-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_delaunaytriangulationq, organization={Wolfram Research}, title={DelaunayTriangulationQ}, year={2012}, url={https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulationQ.html}, note=[Accessed: 16-October-2021 ]}

CMS

Wolfram Language. 2012. "DelaunayTriangulationQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulationQ.html.

APA

Wolfram Language. (2012). DelaunayTriangulationQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ComputationalGeometry/ref/DelaunayTriangulationQ.html