IrreduciblePolynomial[s,p,d]
gives an irreducible polynomial in the symbol s of degree d over the integers modulo the prime p.


IrreduciblePolynomial
IrreduciblePolynomial[s,p,d]
gives an irreducible polynomial in the symbol s of degree d over the integers modulo the prime p.
Details and Options
- To use IrreduciblePolynomial, you first need to load the Finite Fields Package using Needs["FiniteFields`"].
- IrreduciblePolynomial[s,p,d] gives the default irreducible polynomial used to generate the Galois field GF[p,d].
See Also
Tech Notes
Related Guides
Text
Wolfram Research (2007), IrreduciblePolynomial, Wolfram Language function, https://reference.wolfram.com/language/FiniteFields/ref/IrreduciblePolynomial.html.
CMS
Wolfram Language. 2007. "IrreduciblePolynomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FiniteFields/ref/IrreduciblePolynomial.html.
APA
Wolfram Language. (2007). IrreduciblePolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FiniteFields/ref/IrreduciblePolynomial.html
BibTeX
@misc{reference.wolfram_2025_irreduciblepolynomial, author="Wolfram Research", title="{IrreduciblePolynomial}", year="2007", howpublished="\url{https://reference.wolfram.com/language/FiniteFields/ref/IrreduciblePolynomial.html}", note=[Accessed: 18-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_irreduciblepolynomial, organization={Wolfram Research}, title={IrreduciblePolynomial}, year={2007}, url={https://reference.wolfram.com/language/FiniteFields/ref/IrreduciblePolynomial.html}, note=[Accessed: 18-August-2025]}