DTFourierTransform[expr,n,ω]
gives the discrete time Fourier transform of expr as a function of ω, where expr is a function of n.


DTFourierTransform
DTFourierTransform[expr,n,ω]
gives the discrete time Fourier transform of expr as a function of ω, where expr is a function of n.
Details and Options
- To use DTFourierTransform, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
- The discrete time Fourier transform of expr is by default defined to be
expr 2πω.
- DTFourierTransform returns a periodic function of ω with default period 1.
- Different choices for the definition of the discrete time Fourier transform can be specified using the option FourierParameters.
- With the setting FourierParameters->{a,b}, the discrete time Fourier transform computed by DTFourierTransform is
expr 2 πω, a periodic function of ω with a default period of
.
Tech Notes
Related Guides
Text
Wolfram Research (2008), DTFourierTransform, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html.
CMS
Wolfram Language. 2008. "DTFourierTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html.
APA
Wolfram Language. (2008). DTFourierTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html
BibTeX
@misc{reference.wolfram_2025_dtfouriertransform, author="Wolfram Research", title="{DTFourierTransform}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html}", note=[Accessed: 18-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_dtfouriertransform, organization={Wolfram Research}, title={DTFourierTransform}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/DTFourierTransform.html}, note=[Accessed: 18-August-2025]}