InverseDTFourierTransform[expr,ω,n]
gives the inverse discrete time Fourier transform of expr, where expr is a periodic function of ω with period 1.


InverseDTFourierTransform
InverseDTFourierTransform[expr,ω,n]
gives the inverse discrete time Fourier transform of expr, where expr is a periodic function of ω with period 1.
Details and Options
- To use InverseDTFourierTransform, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
- The inverse discrete time Fourier transform of expr is by default defined to be Integrate[expr -2πnω,{ω,-
,
}].
- If n is numeric, it should be an explicit integer.
- Different choices for the definition of the inverse discrete time Fourier transform can be specified using the option FourierParameters.
- With the setting FourierParameters->{a,b}, expr is assumed to have a period of
, and the inverse discrete time Fourier transform computed by InverseDTFourierTransform is
Integrate[expr -2πω,{ω,-
,
}].
- In addition to the option FourierParameters, InverseDTFourierTransform can also accept the options available to Integrate. These options are passed directly to Integrate.
Tech Notes
Related Guides
Text
Wolfram Research (2008), InverseDTFourierTransform, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html.
CMS
Wolfram Language. 2008. "InverseDTFourierTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html.
APA
Wolfram Language. (2008). InverseDTFourierTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html
BibTeX
@misc{reference.wolfram_2025_inversedtfouriertransform, author="Wolfram Research", title="{InverseDTFourierTransform}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html}", note=[Accessed: 18-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_inversedtfouriertransform, organization={Wolfram Research}, title={InverseDTFourierTransform}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/InverseDTFourierTransform.html}, note=[Accessed: 18-August-2025]}